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Category information for visually presented objects can be read out frommulti-voxel patterns of fMRI activity in
ventral–temporal cortex. What is the nature and reliability of these patterns in the absence of any bottom–up
visual input, for example, duringvisual imagery?Here,wefirst askhowwell category information canbedecoded
for imaginedobjects and then compare the representations evokedduring imagery and actual viewing. In an fMRI
study, four object categories (food, tools, faces, buildings) were either visually presented to subjects, or imagined
by them. Using pattern classification techniques, we could reliably decode category information (including for
non-special categories, i.e., food and tools) from ventral–temporal cortex in both conditions, but only during
actual viewing from retinotopic areas. Interestingly, in temporal cortex when the classifier was trained on the
viewed condition and tested on the imagery condition, or vice versa, classification performance was comparable
towithin the imagery condition. The above results held evenwhenwe did not use information in the specialized
category-selective areas. Thus, the patterns of representation during imagery and actual viewing are in fact
surprisingly similar to each other. Consistent with this observation, the maps of “diagnostic voxels” (i.e., the
classifier weights) for the perception and imagery classifiers were more similar in ventral–temporal cortex than
in retinotopic cortex. These results suggest that in the absence of any bottom–up input, cortical back projections
can selectively re-activate specific patterns of neural activity.

© 2009 Elsevier Inc. All rights reserved.
Introduction

The contents of visual perception can be decoded from fMRI
activation patterns in visual cortex. In retinotopic regions, an ideal
observer can predict features of a viewed stimulus (e.g., the
orientation of a grating) (Kamitani and Tong, 2005), the attentional
state of the observer (Kamitani and Tong, 2005), properties of a
stimulus that was not consciously perceived (Haynes and Rees, 2005)
and the identity of viewed natural images (Kay et al., 2008). In higher-
tier areas, object-category information can be gleaned from groups of
category-selective voxels as well as from more distributed represen-
tations (Carlson et al., 2003; Cox and Savoy, 2003; Haxby et al., 2001;
Norman et al., 2006; Reddy and Kanwisher, 2007; Spiridon and
Kanwisher, 2002). These regions have also been implicated in
processing driven solely by top–down control, in the absence of
bottom–up input—i.e., during mental imagery (Finke, 1985; Ishai and
Sagi, 1995). Accordingly, both visual perception and imagery activate
earlier areas, particularly when subjects judge fine details of a
eau et Cognition, Faculte de
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stimulus (Ganis et al., 2004; Kosslyn et al., 1995). Area MT is activated
by imagery of moving stimuli (Goebel et al., 1998), and in ventral–
temporal cortex, imagery of preferred categories (faces and houses)
activates the corresponding category-selective regions (O'Craven and
Kanwisher, 2000). More recently, lateral occipital complexwas shown
to be involved when subjects viewed and imagined the letters ‘X’ and
‘O’ (Stokes et al., 2009).

This observed spatial overlap during imagery and perception does
not necessarily imply that the corresponding representations are
qualitatively the same. Indeed, our subjective experience of imagining
something and seeing it are undoubtedly different. Thus, the neural
representations of visual perception and imagery might be expected
to be substantially different from each other—after all, the former
process is driven by bottom–up input, while the latter is initiated by
top–down signals. Accordingly, in single neurons, response latencies
during imagery are approximately 100 ms slower than during
perception, and peak neuronal responses times can differ by as
much as 800 ms (Kreiman et al., 2000). fMRI studies have also shown
differences in activation during the two conditions. For example,
reliable deactivation in auditory cortex has been observed during
visual imagery, but not during visual perception (Amedi et al., 2005),
the overlap between activation patterns during imagery and
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perception is much larger in frontal regions, than in ventral–temporal
cortex (Ganis et al., 2004), and finally, even in category-selective
regions, imagery activates fewer voxels at a given statistical threshold
(Ishai et al., 2000; O'Craven and Kanwisher, 2000), with a lower
overall response.

Here we directly test whether imagery and perception of object
categories share common visual representations. In an fMRI study, 10
participants viewed or imagined four object categories (Fig. 1). Linear
support vector machines (SVM) were trained on fMRI activation
patterns in a distributed set of object-responsive (OR) voxels in the
perceptual (P) and imagery (I) conditions. First, we tested whether
these P and I classifiers could decode the contents of perception and
imagery respectively. Second, to determine whether the two states
share common representations, each classifier was tested on the other
condition: i.e., the P-classifier decoded the category of imagined
objects and vice versa. The logic here is as follows: if the representa-
tions are largely independent of each other, performance in decoding
category information from the other state should be no different from
chance. Conversely, if the two processes share common representa-
tions performance should be above chance in the test condition.

A recent study by Stokes et al. (2009) used a similar logic in testing
imagery and perceptual representations in LOC. In that study, subjects
were tested with two stimuli (the letters X and O) that were
presented at fixation. In contrast to this relatively simpler classifica-
tion between two elementary shapes, the present study probes a
greater degree of abstraction in visual representations by implement-
ing a 4-way classification of a larger and diverse set of colored natural
photographs (see Methods).

One version of these results has previously been presented in
abstract form (Reddy et al., Society for Neuroscience, Washington, DC,
2008).

Methods

Subjects

Ten healthy subjects participated in the fMRI study. All subjects
gave signed consent and had normal or corrected-to-normal vision.
The study was approved by the Caltech IRB.

Experimental design

Each subject participated in 7 or 8 fMRI scanning runs. Each run
consisted of 5 fixation blocks, 8 blocks of a visual presentation
condition, and 8 blocks of a visual imagery condition (see Fig. S1 for an
Fig. 1. Experimental design. The experiment consisted of two conditions. (A) In the visual p
(tools, food (common fruits and vegetables), famous faces and famous buildings. (B). In the v
the stimuli and asked to generate vivid and detailed mental images corresponding to these
illustration of the design of an example run). Each block lasted 16 s
accounting for a total scan time per run of 5.6 min. During the visual
presentation condition, subjects were visually presented with 4
categories of objects in different blocks. The four categories were
food (common fruits and vegetables), tools, famous faces and famous
buildings. Each category was presented twice per run, in separate
blocks. Each block consisted of 4 trials—one trial per category
exemplar (Fig. 1). Four exemplars per category were used in one
half of the runs, and another 4 exemplars per category were used in
the other half of the fMRI runs. Thus, in total we had 8 exemplars per
category (Fig. S2). Each trial consisted of 2 s of visual presentation and
2 s for task response. The trial order was randomized within the block.

During the visual imagery condition, the block design was similar
to that of the visual presentation condition. On each 4-s trial of a block,
headphones were used to give subjects the name of which category
exemplar they were to imagine (e.g., in a “food” block the instructions
could have been “apple”, “pear”, “grapes”, “tomato”). As in the visual
presentation condition, 4 exemplars were used in one half of the runs
and another 4 exemplars were used in the other half of the runs.
Although only well-known exemplars were used for all categories, we
also made sure that the subjects were familiar with all the category
exemplars for the visual imagery condition. Thus, the night before the
scan session, subjects were provided with the set of 32 images (4
categories×8 exemplars) that would be used during the visual
presentation blocks, and their associated names, and asked to
familiarize themselves with the stimuli. Additionally, 15 min prior
to the scan, subjects were again asked to examine the stimuli. No
subjects reported being unfamiliar with any of the stimuli, as was
expected since only common and highly familiar category exemplars
were used. Before the scan session, subjects were instructed to try to
generate vivid and detailedmental images as similar as possible to the
corresponding images seen in the visual presentation condition.

Note that, as with most previous imagery studies, the critical task
for our subjects was to either visually examine the stimuli presented
in the visual perception condition, or to create vivid mental images
during the imagery condition. Additionally, in order to make sure that
subjects were attending to the images, they were asked to perform a
secondary task during both conditions and to press a button if the
color of two successive images was the same (i.e., a one-back task; see
legend of Fig. S2 for further details of the subjects' tasks). For the
famous face category, we had examples of African-American and
Caucasian celebrities and subjects performed the task on the color
of these faces. Subjects performed the color task for the entire
stream of 16 images (4 images×4 categories) in each “perception”
and “imagery” condition (i.e., both within and across categories; see
erception (P) condition, subjects viewed different exemplars of 4 categories of objects
isual imagery (I) condition subjects were given auditory instructions with the names of
names. Note that in the actual experiment colored stimuli were used (see Fig. S2).
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Fig. S1 for a depiction of these blocks). All images were presented at
fixation and subtended approximately 6 degrees of visual angle.

Using auditory instructions, subjects were asked to close their eyes
prior to the visual imagery blocks and to open them prior to the start
of the visual presentation blocks (we confirmed that subjects followed
these instructions with online monitoring with an ASL eyetracker).
Because of these instructions, the visual presentation (P) and visual
imagery (I) conditions were presented in sequences of 4 blocks,
separated by a fixation block (e.g., fixation, P-face, P-building, P-tool,
P-food, fixation, I-tool, I-building, I-face, I-food, fixation, etc.). Within
each P or I sequence the block order was randomized. The order of the
sequences followed an ABBA design in each run. Each run started with
a P sequence.

It should be noted that, as shown in Fig. S1, our perception and
imagery conditions were presented in distinct blocks, separated by
16 s long fixation intervals. Additionally, most of the time, perception
of category X was followed by imagery of another category Y (with
the 16-s fixation interval in between). This design minimizes any
priming effects between the perception and imagery conditions;
indeed, any priming effect of perception on imagery would only have
been detrimental to decoding performance (at least in the majority of
blocks where perception of X was followed by imagery of Y).
Additionally, the order of imagery and perception blocks was
counter-balanced on each run.

Regions of interest (ROIs)

In separate localizer runs, subjects were presented with blocks of
faces, scenes, objects and scrambled images. Based on the data
obtained in these localizer runs a set of object-responsive voxels (OR)
was defined. This OR ROI was the set of distributed voxels in the
ventral–temporal cortex that were more strongly activated to faces,
objects, or scenes compared to scrambled images (pb10−5, uncor-
rected). OR thus included the FFA, PPA and LOC as well as other
object-responsive voxels in ventral–temporal cortex. See Fig. S3A for a
map of OR. In control analyses, we also considered OR with the
exclusion of the FFA and PPA and refer to this ROI as OR-FFA&PPA. The
FFA was defined as the set of contiguous voxels in the fusiform gyrus
that showed significantly stronger activation (pb10−4, uncorrected)
to faces than to other objects. The PPA was defined as the set of voxels
in the parahippocampal gyrus that showed stronger activation to
scenes versus objects (pb10−4, uncorrected).

Retinotopy

Meridian mapping was performed by alternately presenting a
horizontal or vertical flickering checkerboard pattern for 18 s at each
location. The horizontal and vertical meridians were stimulated
8 times each per run (total run time=288 s). Two such runs were
acquired per subject. The average retinotopic ROI across subjects is
shown in Fig. S3B.

fMRI data acquisition and analysis

fMRI data were collected on a 3-T Siemens scanner (gradient echo
pulse sequence, TR=2 s, TE=30ms, 32 slices with an 8-channel head
coil, slice thickness=3 mm, in-plane voxel dimensions=3×3 mm)
at the Caltech Brain Imaging Center. High-resolution anatomical
images were also acquired per subject. Data analysis was performed
with FreeSurfer and FS-FAST (http://surfer.nmr.mgh.harvard.edu),
fROI (http://froi.sourceforge.net) and custom Matlab scripts. Before
statistical analysis, all images weremotion corrected (using AFNI with
standard parameters), intensity normalized and smoothed with a
5-mm full-width at half maximum Gaussian kernel. (Note that to
check the effect of smoothing on the final results, several different
kernel sizes were also applied (Fig. S4).) For defining the ROIs, average
signal intensity maps were then computed for each voxel using
FS-FAST. For each subject, we created a design matrix that included
the fixation condition and the four conditions of the localizer runs. The
predictor for each stimulus condition (0 or 1 at each time point) was
convolved with a gamma function, and the general linear model was
used to compute the response of each voxel in each condition. This
response was expressed as the percent signal change, i.e., the
response in each condition minus the response in the fixation
condition, normalized by the mean signal in each voxel.

Multivariate analysis

Preprocessing for the multivariate analysis was conducted using
the Princeton Multi-Voxel Pattern Analysis (MVPA) toolbox (http://
www.csbmb.princeton.edu/mvpa) as well as custom Matlab func-
tions. Following the MVPA processing stream, after motion correction
and smoothing, for each subject, the BOLD signal was detrended by
fitting a second-degree polynomial for each voxel and each run. After
detrending, a z-score transformwas applied to the data (for each voxel
in each run). Finally to correct for the hemodynamic lag, the regressor
for each presentation condition (i.e., the matrix of values that denotes
at each time point which condition was active) was convolved with a
gamma hemodynamic response function. The regressors matrix was
then used in the classification procedure as category labels.

The multi-class classification results reported here are based on
the support vector machine (SVM) classification algorithm and the
machine learning Spider toolbox developed at the Max Planck
Institute (http://www.kyb.mpg.de/bs/people/spider). In all experi-
ments, we used a linear kernel and the one-versus-all multi-class
classification scheme. Because of the small number of examples
available for training and testing we did not attempt to optimize the
‘C’ constant (default value ‘C=Inf’). In a post hoc analysis, we
nonetheless verified that the performance obtained for the resulting
classifier remained robust to the exact parameter value. Very similar
classification results were obtained using non-linear kernels (linear
vs. polynomial vs. Gaussian), other classification schemes (one-
versus-all vs. all-pairs) and other classification algorithms (SVM vs.
boosting vs. regularized least-square). Using a leave-one-run-out
procedure, we trained classifiers on N-1 runs and computed the mean
classification performance on the remaining Nth run for each subject.
Mean performance values across subjects are reported here. For
further details see the supplemental information section.

Analysis of SVM weight maps

Note that the support vector machine (SVM) analysis was
conducted individually for each subject in his or her respective ROIs
and the performance values across subjects were then averaged
(Fig. 2). However, to plot the average weights of the SVM analyses in
OR across subjects (Fig. S7), each subject's brain was aligned to the
FreeSurfer ‘fsaverage’ brain. FreeSurfer was first used to reconstruct
the original surface for each participant from the high-resolution
anatomical scan. Individual brains were then aligned to each other in
FreeSurfer by spatially normalizing the cortical surfaces to a spherical
surface template using an automated procedure to align the major
sulci and gyri (Fischl et al., 1999). For each subject, a map of SVM
weights was computed by taking the z-score across voxels of the
weight maps per run from each leave-one-run-out procedure. The
average of these maps across runs and then subjects was computed
and overlaid on the average brain. To compute the correlation values
shown in Fig. 4, we calculated the z-score of the weight maps from
each leave-one-run-out procedure in each subject's functional space.
These weight maps were then averaged across runs and correlations
between the weight maps for the perception and imagery classifiers
were computed for all pairs of categories for each subject. The results
were then averaged across subjects.

http://surfer.nmr.mgh.harvard.edu
http://froi.sourceforge.net
http://www.csbmb.princeton.edu/mvpa
http://www.csbmb.princeton.edu/mvpa
http://www.kyb.mpg.de/bs/people/spider


Fig. 2. Confusion matrices for classification in (A) the intact OR ROI, (B) OR ROI with the FFA and PPA excluded and (C) the Retinotopic voxels. Each confusion matrix shows the
probability with which an input pattern presented along the rows would be classified as one of the 4 alternative outcomes (along the columns). P/P and I/I correspond to
classification performance when both training and testing was performed on the visual presentation conditions or the mental imagery conditions respectively. P/I corresponds to
training on visual presentation and testing on imagery (and vice versa for I/P).
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Meridian mapping

Meridian mapping analysis was performed on the reconstructed
cortical surface for each subject by contrasting the horizontal and
vertical stimulation periods to define the borders between visual
areas. Areas V1 and V2 were included in the “Retinotopic Voxels ROI”
described in the Results section.

Statistical tests

All the ANOVAs reported in this study are repeated measures
ANOVAs. All post hoc tests were Bonferroni corrected for multiple
comparisons.

Results

Participants were tested in two fMRI experimental conditions
(Fig. 1). In the visual presentation (P) condition they viewed different
exemplars of four categories of stimuli (food (common fruits or
vegetables), tools, famous faces and famous buildings) in separate
blocks. In the visual imagery (I) condition, they were given auditory
instructions with the names of these exemplars and asked to imagine
them. For each category, four exemplars were used in one half of the
fMRI runs, and another four exemplars were used in the second half of
runs. As mentioned in the Methods section, prior to the fMRI scans
participants were asked to familiarize themselves with all the stimuli
and their corresponding names so that they could generate mental
images of these stimuli in the I condition. The average activation maps
during the perception and imagery conditions across subjects is
shown in Fig. S5. Consistent with previous studies, the imagery
condition evoked activation in smaller clusters compared to the
perception condition (Ishai et al., 2002).

Classification performance during perception and imagery in OR

For each subject, we defined a set of object-responsive (OR) voxels
in ventral–temporal cortex that respondedmore strongly to images of
faces, scenes or random objects compared with scrambled images.
The multivariate pattern of responses in the distributed set of object-
responsive voxels in ventral–temporal cortex has previously been
shown to provide information about object category (Haxby et al.,
2001; Reddy and Kanwisher, 2007; Spiridon and Kanwisher, 2002).
Consistent with these studies a multivariate analysis of the responses
in OR allowed us to read out category information during the visual
presentation condition. Using a leave-one-run-out procedure, a linear
support vector machine (SVM) was trained and tested on the OR fMRI
activity patterns corresponding to the four object categories in the P
condition. The performance of this classifier in OR is shown in Fig. 2A.
The top-left confusion matrix in Fig. 2A shows the probability with
which an input pattern (along the rows) was classified as each of the 4
alternative choices (along the columns). The higher probabilities
along the diagonal and the lower off-diagonal values indicate
successful classification for all categories. For the P-P classification
test (i.e., trained and tested on the P condition), average performance
was 67% (chance performance: 25%).

Having obtained above-chance classification performance in the P
condition, we next asked whether category information could also be
read out when participants were imagining the objects, in the absence
of any visual input. To address this question, a classifier was trained
and tested on activation patterns associated with the mental imagery
conditions. As shown in the confusion matrix for this I/I classification
(Fig. 2A), above-chance performance was obtained across all
categories (50%, with chance at 25%). Thus, regions that carry
information about perceived object category also seem to contribute
to the representation of these categories in the absence of bottom–up
visual inputs.

The successful performance of the P and I classifiers on the P/P and
I/I classification tests, allowed us to next address the main question of
this study—whether viewing an object and imagining it evoked
similar representations in OR. To this end, we tested the P-classifier on
the I condition, and the I classifier on the P condition (i.e., cross-
generalization, across conditions). Above-chance classification per-
formance in these cases would indicate that the two representations
share common features that allow the classifiers to generalize from
one condition to the other. As shown in Fig. 2A (bottom left and right
matrices respectively), classification performance was on average 47%
and 52% (with chance at 25%). Note that similar classification
performance was observed when the set of voxels activated during
mental imagery was considered as the ROI (Fig. S8).

To test how classification performance in OR depended on
category and classification test (i.e., P/P, I/I, I/P, P/I), a 2-way
repeated measures ANOVA of category X classification test was
performed. The ANOVA revealed a significant main effect of category
(F(3,27)=10.27; pb .001), a significant main effect of classification
test (F(3,27)=11.51; pb .0001) and a significant interaction effect
(F(9,81)=3.93; pb0.005). Post hoc tests, Bonferroni corrected for
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multiple comparisons, revealed that classification performance for
faces and buildings was significantly higher than for food and tools. A
2-way discrimination of tools versus food also revealed above-
chance performance for all 4 classifier tests in OR. The results of this
discrimination performance can be seen in the lower right portion of
the confusion matrices in Fig. 2A, where we directly see how often
foods and tools were correctly predicted versus how often foods
were confused for tools and vice versa (incorrect predictions). A 2-
way ANOVA of the performance values (correct prediction vs.
incorrect prediction)×classifier test revealed a significant main
effect of performance (F(1,72)=42.14; pb0.0001) but no significant
effect of classifier test nor a significant interaction effect. A post hoc
Bonferroni-corrected test revealed that the performance on correct
predictions was significantly larger than on incorrect predictions.

The successful performance obtained in OR was not solely driven
by face and scene selective voxels in the FFA and PPA respectively.
Similar performance values were also obtained when the FFA and PPA
were removed from OR (Fig. 2B): 65% for P/P, 47% for I/I, 44% for P/I
and 48% for I/P. Similar to the results in Fig. 2A, a 2-way ANOVA in this
OR-FFA&PPA ROI of category×classification type revealed significant
main effects of category (F(3,27)=7.48; pb0.001), classification type
(F(3,27)=10.51; pb0.0005) and a significant interaction effect
(F(9,81)=2.95; pb0.005). Post hoc tests indicated a category
advantage in the order facesNbuildings=toolsN food.

In terms of the type of classification performed, for both the ROIs
considered in Figs. 2A and B, the post hoc tests revealed that
performance for P/P classification was significantly higher than for
the other three types. Importantly, the post hoc test showed no
significant difference between the I/I classification and both the P/I
and I/P classification tests. In other words, classification performance
across the P and I conditions was just as good as performance within
the I condition. Performance in the I/I classification test serves as an
upper bound for the expected performance of the P/I and I/P
classifications—this is because classification within each condition
must theoretically be better than, or just as good as, classification
across conditions. Thus, the finding that across-condition classifica-
tion was not significantly different from classification within the I
condition indicates that, overall, the activation patterns obtained on
perception and imagery runs are at least as alike as patterns obtained
on different runs of visual imagery in both OR and OR-FFA&PPA.

Do these observed results rely on the actual pattern of individual
voxel activations in the ROIs, or is the relevant information provided
equally well by some global property of each ROI, such as the mean
response? To address this question, we performed two tests: first, we
scrambled the voxel order of the test data relative to the training
dataset—this procedure amounts to keeping the mean BOLD response
in each ROI constant across training and test, but removes
information carried in the multi-voxel pattern. Second, we shuffled
the labels associated with each category in the training data, thus
removing any consistent category-specific information in the activa-
tion patterns. Classification performance in these scrambled controls,
based on 50 shuffles of the labels and voxel order, is shown in Fig. S6.
The ability to decode category information was severely reduced in
the scrambled controls indicating that the successful classification in
Fig. 2A and B relied on the fine-scale pattern of voxel activations in
the fMRI response. In OR, a 2-way repeated measures ANOVA of
scrambling type (intact (original) ROI, scrambled voxels or shuffled
labels)×classifier test revealed significant main effects of scrambling
(F(2,18)=88.3; pb0.0001) and classification tests (F(3,27)=10.29;
pb0.005). Post hoc tests revealed that performance of the P/P
classification was significantly larger than the other three, and
performance in the intact ROI was larger than in both scrambled
controls. The interaction effect of the ANOVA was also significant
(F(6,54)=14.94; pb0.0001), consistent with the higher performance
of the P/P classification in the intact versus scrambled ROIs. Similarly
when the FFA and PPA were removed from OR, the 2-way repeated
measures ANOVA revealed significant main effects of scrambling
(F(2,18)=50.56; pb0.0001), classification tests (F(3,27)=9.26;
pb0.005) and a significant interaction effect (F(6,54)=9.97;
pb0.0001). Post hoc tests revealed that performance of the P/P
classification was significantly larger than the other three, and
performance in the intact ROI was larger than in both scrambled
controls.

We used the results from the shuffle-label control in a non-
parametric bootstrap analysis to determine whether classification
performance for each individual category was significantly above
chance in the four classification tests. Surrogate classification
performance values for each subject were obtained by randomly
drawing from one of the 50 re-shuffles of the shuffle-label control and
averaging these values across subjects. This procedure was repeated
106 times with different random drawings of each subject's surrogate
performance, and each time the true performance values were
comparedwith the average of these surrogates. Based on this analysis,
classification performance for each category was significantly above
chance at a threshold of pb5⁎10−6 in OR and pb5⁎10−5 in OR-
FFA&PPA in all four classification tests. Above-chance classification
performance for faces and houses might be expected from previous
studies that have shown that mental imagery of these categories
elicits a significant increase in the average BOLD response in the FFA
and PPA, respectively. However, here we show (1) that these results
also hold when the FFA and PPA are not included in the analysis and
(2) that imagery of non-“special” categories (i.e., food and tools) also
generates reliable activation patterns in object-responsive cortex.

Classification performance during perception and imagery in
retinotopic regions

The four classification tests were also performed in early
retinotopic voxels (V1+V2). In the intact (i.e., original, non-
scrambled) retinotopic ROI only the P/P classification performed
was above chance (Fig. 2C). A 2-way repeated measures ANOVA of
category X classification type in the intact ROI revealed a significant
main effect of category (F(3,27)=4.06; pb0.02), a significant main
effect of classification type (F(3,27)=14; pb0.0001), and a significant
interaction effect (F(9,81)=4.94; pb0.0001). Post hoc tests, Bonfer-
roni corrected for multiple comparisons, revealed that classification
performance for faces and food was significantly larger than for tools
(performance for landmarks was not different from either group) and
performance of the P/P classification was significantly larger than the
other three tests. Note that it is not surprising that the P/P test
performswell in the intact retinotopic ROI—all stimuli were presented
at the center of the screen and classification could merely rely on
lower level properties of these stimuli (e.g., the similarity in shapes for
faces, or the spatial frequencies for landmarks). Importantly,
classification performance of the P/P test in the intact retinotopic
ROI was significantly lower than in the intact OR ROI (pb0.005).
Furthermore, classification performance of the imagery classifier was
at chance in the intact retinotopic ROI (see also Fig. 3).

Scrambling tests were also performed in the retinotopic ROI
(Fig. S6). A 2-way ANOVA of scrambling type×classifier test revealed
significant main effects of scrambling (F(2,18)=20.49; pb0.0001),
classification tests (F(3,27)=10.99; pb0.005) and a significant
interaction effect (F(6,54)=16.87; pb0.0001). Again, post hoc tests
revealed higher performance in the intact ROI, and for the P/P
classification.

These results of the four classification tests performed in all three
ROIs are summarized in Fig. 3 which reports performance pooled over
categories. As mentioned earlier, performance in OR and OR-FFA&PPA
was above chance for all classification tests for the intact ROI, but at
chance for both scrambling controls (Figs. 3A and B). In the
retinotopic ROI (Fig. 3C), performance was only above chance for
the P/P classification in the intact ROI. A 3-way ANOVA of ROI (OR,



Fig. 3. Classification performance for the 4 types of classification pooled over categories in (A) object-responsive voxels, (B). OR-FFA&PPA and (C) in retinotopic voxels. “Scrambled
voxels” corresponds to scrambling the voxel order for the test data in comparison to the training data, and “Shuffle labels” corresponds to shuffling the labels of the training
examples. The performance values plotted here correspond to the mean of the diagonal values in the corresponding matrices in Figs. 2 and S6 (⁎=pb0.005). Note that since a 4-way
classification was performed, chance performance is at 25%. Error bars represent SEM.
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OR-FFA&PPA, retinotopic)×scrambling type (intact ROI, scrambled
voxels, scrambled labels)×classifier test supported these observa-
tions. We obtained significant main effects of ROI (F(1,9)=39.81;
pb0.0001), classifier test (F(3,27)=13.93; pb0.0001) and scrambling
type (F(2,18)=72.13; pb0.0001). Post hoc tests revealed higher
performance in the P/P versus the other three tests and an ROI
advantage in the order: ORNOR-FFA&PPANRetinotopic. A significant
interaction effect of classification test×scrambling type (F(6,54)=
19.26; pb0.0001) was consistent with the higher performance of the
P/P classification in the intact ROIs. Classification performance of the
P/P test in the intact retinotopic ROI was significantly lower than in
the intact OR ROI (pb0.005) and the intact OR-FFA&PPA ROI (pb0.05).
Finally, the 2-way interaction of ROI×scrambling type was also
significant (F(2,18)=31.03; pb0.0001). There was no significant
interaction of ROI×classification test (F(3,27)=1.18; p=0.33).

To summarize, our results show that ventral–temporal activation
patterns obtained during both visual perception and mental imagery
provide information about the object categories being imagined.
Furthermore, the activation patterns obtained in the two conditions
overlap substantially, thus allowing for successful cross-generaliza-
tion across the two conditions. We next examine this similarity in
representations in greater detail.

Overlap of representations during perception and imagery

The above-chance classification performance of the P and I
classifiers in generalizing across conditions (i.e., imagery and
perception respectively) suggests that there is a significant overlap
in the representations of these two states in object-responsive voxels
in ventral–temporal cortex. Fig. S7 shows one way to visualize this
overlap by considering the pattern of weights assigned by the SVM
procedure to each voxel—these weight maps essentially indicate the
importance of each voxel's contribution to the discrimination between
categories.
Fig. 4. Correlation of the SVM weight maps of the P and I classifiers for all pairs of
categories in OR (A) and the retinotopic voxels (B).
In particular, the successful cross-generalization performance
argues that the weight maps of the P and I classifiers for a given
category should be more similar to each other than the weight map of
the P-classifier for one category and the I classifier for a different
category (or vice versa). To statistically test this prediction, we
computed correlations of theweightmaps for all pairs of categories, in
both ROIs. The correlations were first computed for each subject's
weight maps (i.e. on the individual rather than the “average” brain),
and then averaged across subjects. The results are shown in Fig. 4A for
OR and Fig. 4B for the retinotopic ROI. A 2-way repeated measures
ANOVA of weights (within category/across category)×ROI revealed a
significant main effect of weights (F(1,9)=54.22; pb0.0001), a
significant main effect of ROI (F(1,9)=52.67; pb0.0001) and a
significant interaction effect (F(1,9)=48.94; pb0.0005). Post hoc
Bonferroni corrected comparisons revealed that the weight map
overlap within category was higher than across category, and higher
in OR than in retinotopic voxels.

In particular, this comparison of weight maps indicated a
significant overlap for each category between the representations
involved in perception and imagery in OR. Separate statistical tests for
each category showed that the weight maps were significantly more
correlated within category than across categories (i.e., a comparison
of the diagonal versus off-diagonal elements in Fig. 4A; pb0.001 for
each category, paired t-tests). A similar effect was not observed in the
retinotopic voxels for any category, except landmarks (p=0.02). Note
also that for each category, the within-category correlations in OR
were significantly larger than the corresponding within-category
correlations in the retinotopic ROI (pb0.05 for tools and pb0.001 for
the other categories). These results thus indicate that the category
representations during perception and imagery share the same
“diagnostic voxels” in OR.

Discussion

In this study we asked three questions: first, if we could reliably
decode the content of mental images; second, if visually perceived
and imagined objects were coded for in similar regions; and finally, if
the representations in both conditions shared equivalent neural
substrates at the level of multi-voxel patterns in ventral–temporal
cortex.

In response to the first question, we found that category-level
information for imagined objects (including non-special objects i.e.,
tools and fruits) could be successfully read out from object-responsive
voxels in ventral–temporal cortex. Second, consistent with other
studies (Ishai et al., 2000; Mechelli et al., 2004; O'Craven and
Kanwisher, 2000), the same voxels were also involved in the coding
of visually perceived stimuli. In the last few years, multi-voxel pattern
analysis techniques have been extensively used to not only decode the
information available in visual areas, but to also investigate the effects
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of top–down modulating signals on visual processing. For example,
Kamitani and Tong (2005) showed that when two stimuli were
simultaneously presented to subjects, it was possible to read out
which of the two stimuli subjects were attending to. Similarly,
Serences and Boynton (2007) demonstrated that it was possible to
decode the attended direction of motion from area MT. More recently,
Harrison and Tong (2009) showed that orientation information held
in working memory could be read out from early visual areas. Finally,
Stokes and colleagues (2009) recently found that imagery of the letter
X versus the letter O could be decoded from LOC. The present study
extends this body of work and suggests that top–down driven visual
information of natural object categories can be robustly readout in the
complete absence of bottom–up input, during mental imagery.

Although OR was activated in both top–down and bottom–up
driven visual processes, as argued earlier, a spatial overlap of voxel
activations does not imply shared fine-grained representations at the
level of individual voxels. The use of pattern classification techniques
in the current study allowed us to conclusively address our third
question and indicated that actual viewing and mental imagery
shared the same representations at the level of fine-grained multi-
voxel activation patterns in object-responsive ventral–temporal
cortex. When using such classifiers trained on perception to decode
imagery and vice versa, we found reliable cross-generalization
performance, which in fact was similar to the performance achieved
within the imagery condition. Furthermore, the SVM weight maps
indicated that the same voxels participated in discriminating between
object categories during perception and imagery. Thus, the present
study demonstrates a high level of similarity between the fine-grained
representations involved in perception and imagery of natural object
categories. An interesting question for future research would be to
assess the similarity of activation patterns during automatic retrieval
and visual perception.

A recent study by Stokes et al. (2009) reported similarity of multi-
voxel patterns in LOC during perception and imagery of two letters (X
and O). The authors showed that a classifier trained on activation
patterns in anterior LOC during visual perception could decode above
chance which of the two items participants were imagining. In
contrast to classifying two elementary shapes, our study reports a 4-
way classification of high-level, category-level information within a
large and diverse set of colored natural photographs. As detailed in the
Methods section, we used four categories of stimuli, with eight
exemplars per category, and each half of our fMRI study was based on
independent sets of these stimuli. This design thus served to increase
the overall variability of the stimulus sets in the classification
procedure, and consequently, the generalizability of our findings
about high-level representations during perception and imagery.

Perceptual processing involves interactions between top–down
signals and bottom–up inputs (Koch and Poggio, 1999; Lamme et al.,
1998; Murray et al., 2002; Rao and Ballard, 1999; Williams et al.,
2008). The present set of results indicates that feedback signals in the
absence of bottom–up input can be sufficient to evoke category-
specific representations in ventral–temporal cortex. Although these
“mental imagery” representations do not induce the same vivid
percept as during actual viewing, they were still reliable enough to be
decodedwithmulti-voxel pattern analysis techniques. In contrast, the
corresponding information could only be read out from retinotopic
voxels when the stimuli were actually viewed, i.e., when bottom–up
inputs were present. The role of primary visual cortex during mental
imagery is still debated (for a meta-analysis, see Kosslyn and
Thompson, 2003). On the one hand, several recent studies have
shown that V1 can be activated when subjects imagine stimuli or
retrieve them from memory (Cui et al., 2007; Ishai et al., 2002;
Kosslyn et al., 1999; Kosslyn et al., 1995; Slotnick et al., 2005). For
instance, Kosslyn and colleagues (1995) have argued that mental
imagery of objects and other simpler stimuli (Kosslyn et al., 1999)
activates primary visual cortex, and that performance on the imagery
task is impaired after applying r-TMS to these areas (Kosslyn et al.,
1999). Cui et al.(2007) found that early visual areas were activated
during imagery, and further that the activity in these voxels was
correlated with each participant’s subjective report of the vividness of
their mental images. Finally, very recently Harrison and Tong (2009)
showed that orientation information held in working memory could
be decoded from fMRI activity in areas V1–V4. However, in contrast to
these studies, several other authors have found no evidence for the
role of V1 in generating mental images (D'Esposito et al., 1997;
Formisano et al., 2002; Ishai et al., 2000; Knauff et al., 2000; Trojano
et al., 2000; Wheeler et al., 2000). Consistent with this work, here we
also show that patterns of V1 activation do not predict category
information for imagined stimuli, but that this information can still be
gleaned from higher-level areas. Thus, our results indicate that while
V1 may get activated during imagery, it is not a necessary condition
for the generation of mental images.

Indeed, V1 activation during imagery may only be called for when
participants have to access high-resolution information during visual
imagery (Kosslyn and Thompson, 2003) or retrieve information from
short-termmemory (Ishai et al., 2002). A very simplemodel of mental
imagery (Serre, 2006) predicts that mental images are created via
feedback to different areas across the visual hierarchy. According to
this model, re-activating lower level areas (i.e., V1 vs. OR) to generate
the mental images requires more time and would only be needed for
difficult tasks that rely on fine discriminations. Thus, while our
findings in this study indicate that the same patterns of neural activity
generated during visual perception get reactivated during mental
imagery, whether andwhen lower areas also get involved, remains an
open question.
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