On the Role of Object-specific Features for Real
World Object Recognition in Biological Vision

Thomas Serre, Maximilian Riesenhuber, Jennifer Louie, and Tomaso Poggio

Center for Biological and Computational Learning, Mc Govern Institute for Brain
Research, Artificial Intelligence Lab, and Department of Brain and Cognitive
Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
{serre, max, jenlouie, tp}@ai.mit.edu

Abstract. Models of object recognition in cortex have so far been mostly
applied to tasks involving the recognition of isolated objects presented
on blank backgrounds. However, ultimately models of the visual system
have to prove themselves in real world object recognition tasks. Here we
took a first step in this direction: We investigated the performance of the
HMAX model of object recognition in cortex recently presented by Riesen-
huber & Poggio [1,2] on the task of face detection using natural images.
We found that the standard version of HMAX performs rather poorly on
this task, due to the low specificity of the hardwired feature set of C2
units in the model (corresponding to neurons in intermediate visual area
V4) that do not show any particular tuning for faces vs. background. We
show how visual features of intermediate complexity can be learned in
HMAX using a simple learning rule. Using this rule, HMAX outperforms a
classical machine vision face detection system presented in the literature.
This suggests an important role for the set of features in intermediate
visual areas in object recognition.

1 Introduction

Object recognition in the macaque has mostly been explored using idealized dis-
plays consisting of individual (or at most two) objects on blank backgrounds, and
various models of object recognition in cortex have been proposed to interpret
the data from these studies (for a review, see [1]). However, ultimately models
of the visual system have to prove themselves in real world object recognition
settings, where scenes usually contain several objects, varying in illumination,
viewpoint, position and scale, on a cluttered background. It is thus highly inter-
esting to investigate how existing models of object recognition in cortex perform
on real-world object recognition tasks.

A particularly well-studied example of such a task in the machine vision lit-
erature is face detection. We tested the HMAX model of object recognition in
cortex [1] on a face detection task with a subset of a standard database previ-
ously used in [3]. We found that the standard HMAX model failed to generalize
to cluttered faces and faces with untrained illuminations, leading to poor de-
tection performance. We therefore extend the original model and propose an
algorithm, described in section 2, for learning object class-specific visual fea-
tures of intermediate complexity. In section 3, we investigate the impact of the
learned object-specific feature set on the model’s performance for a face detec-
tion task. In particular, we trained and tested the same classifier (a Support



Vector Machine) on the two sets of outputs collected with the different feature
sets (i. e., the standard HMAX features vs. the new learned object class-specific
features). As a benchmark, we added performances of a classical machine vision
face detection system similar to [4].

2 Methods

2.1 HMAX

The model is an hierarchical extension of the classical paradigm [5] of building
complex cells from simple cells. The circuitry consists of a hierarchy of layers
leading to greater specificity and greater invariance by using two different types
of pooling mechanisms. “S” units perform a linear template match operation to
build more complex features from simple ones, while “C” units perform a nonlin-
ear MAX pooling operation over units tuned to the same feature but at different
positions and scales to increase response invariance to translation and scaling
while maintaining feature specificity [2]. Interestingly, the prediction that some
neurons at different levels along the ventral stream perform a MAX operation
has recently been supported at the level of complex cells in cat striate cortex
(Lampl, I., Riesenhuber, M., Poggio, T., and Ferster, D., Soc. Neurosci. Abs.,
2001) and at the level of V4 neurons in the macaque [6].

Input patterns are first filtered through a continuous layer S1 of overlapping
simple cell-like receptive fields (first derivative of gaussians) of different scales
and orientations. Limited position and size invariance, for each orientation, is
obtained in the subsequent C1 layer through a local non-linear MAX operation
over neighboring (in both space and scale) S1 cells. Response of C1 cells to
typical face and background stimuli are shown in Fig. 1. Features of intermediate
complexity are obtained in the next level (S2) by combining the response of 2 x 2
arrangements of C1 cells (for all possible combinations, giving 4* = 256 different
features), followed by a MAX over the whole visual field in the next layer, C2,
the final pooling layer in the standard version of HMAX [1]. An arbitrary object’s
shape is thus encoded by an activation pattern over the 256 C2 units.

Fig. 1. Typical stimuli and associated responses of the C1 complex cells (4 orienta-
tions). The orientation of the ellipses matches the orientation of the cells and inten-
sities encode response strength. For simplicity, only the response at one scale (std
2.75-3.75 pixels, 6 x 6 pooling range) is displayed. Note that an individual C1 cell is
not particularly selective either to face or to non-face stimuli.



2.2 Classification Stage

We wish to compare the impact of two different representations on HMAX’s per-
formance on a benchmark face detection task: (i) the representation given by
hardwired features from the standard HMAX, and (ii) the representation given
by the new learned object class-specific features. A standard technique in ma-
chine vision to compare feature spaces is to train and test a given classifier on
the data sets produced by projecting the data into the different representation
spaces. It is still unclear how categorization tasks are learned in cortex [7] (but
see the accompanying BMCV paper by Knoblich et al. ). We here use a Sup-
port Vector Machine [8] (svM) classifier, a learning technique that has been
used successfully in recent machine vision systems [4, 3]. It is important to note
that this classifier was not chosen for its biological plausibility, but rather as
an established classification back-end that allows us to compare the quality of
the different feature sets for the detection task independent of the classification
technique.

2.3 Face Detection Task

Each system (i. e., standard HMAX, HMAX with feature learning, and the “AI”
system (see below)) was trained on a reduced data set similar to [3] consisting of
200 synthetic frontal face images generated from 3D head models [9] and 1,000
non-face image patterns randomly extracted from larger background images. Af-
ter training, we tested each system on a test set of 1,300 face images (denoted
“all faces” in the following) containing: (i) 900 “cluttered faces” and (ii) 400
“difficult faces”. The “cluttered faces” were generated from 3D head models [9]
that were different from training but were synthesized under similar illumination
conditions. The “difficult faces” were real frontal faces presenting untrained ex-
treme illumination conditions. The negative test set consisted of 1,845 difficult
background images'. Examples for each set are given in Fig. 2.
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Fig. 2. Typical stimuli used in our experiments. From left to right: Training faces and
non-faces, “cluttered (test) faces”, “difficult (test) faces” and test non-faces.

! Both 400 difficult frontal faces and background images were extracted from the larger
test set used in [3]. Background patterns were previously selected by a low-resolution
classifier as most similar to faces.



2.4 Feature Learning

The goal of the feature learning algorithm was to obtain a set of object class-
specific features. Fig. 3 shows how new S2 features are created from C1 inputs
in the feature learning version of HMAX: Given a certain patch size p, a feature
corresponds to a p X p x 4 pattern of C1 activation w, where the last 4 comes
from the four different preferred orientations of C1 units used in our simulations.
The precise learned features or prototypes u (the number of which was another
parameter, n) were obtained by performing vector quantization (VQ, using the
k-means algorithm) over randomly chosen patches of size pxpx4 of C1 activation
obtained from extraction at random position over 200 face images (also used in
training the classifier). Choosing m patches per face image therefore leaded to
M = 200 x m total patches for training. In all simulations, p varied between
2 and 20, n varied between 4 and 3,000, m varied between 1 and 750 and M
varied between 200 and 150,000. S2 units behave like gaussian RBF-units and
compute a function of the squared distance between an input pattern and the
stored prototype: f(z) = aexp —%7 with o chosen to normalize the value
of all features over the training set between 0 and 1.

2.5 The “AI” (Machine Vision) System

As a benchmark we added performances of a classical machine vision face detec-
tion system similar to [4]. Detection of a face was performed by scanning input
images at different scales by use of a search window. At each scale and for each
position of the window, gray values were extracted and pre-processed as in [4] to
feed a second-degree polynomial SvM.2 All systems (i. e., standard HMAX, HMAX
with feature learning, and the “AI” system) were trained and tested on the same
data sets (see section 2.3).

3 Results

3.1 Performance of Standard HMAX

As evident from Fig. 4, performance of the standard HMAX system on the face de-
tection task is pretty much at chance: The system didn’t generalize well to faces
with similar illumination conditions but set into background (“cluttered faces”)
or to faces with less clutter (indoor scenes) and untrained illumination conditions
(“difficult faces”). This indicates that the object class-unspecific dictionary of
features in standard HMAX is insufficient to perform robust face detection. This is
easily understood, as the 256 features cannot be expected to show any specificity
for faces vs. background patterns. In particular, for a specific image containing
a face on a background pattern, the activity of C2 model units (which pool over
S2 units tuned to the same feature but having different receptive field locations)
will for some C2 units be due to image patches belonging to the face. But, for
other S2/C2 features, a part of the background might cause a stronger activation
than any part of the face, thus interfering with the response that would have
been caused by the face alone. This interference leads to poor generalization
performances, as borne out in Fig. 4.

2 Using a linear svM yielded comparable detection performance.
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Fig. 3. Sketch of the HMAX model with feature learning: Patterns on the model “retina”
are first filtered through a continuous layer S1 (simplified on the sketch) of overlap-
ping simple cell-like receptive fields (first derivative of gaussians) at different scales
and orientations. Neighboring S1 cells in turn are pooled by C1 cells through a MAX
operation. The next S2 layer contains the RBF-like units that are tuned to object-parts
and compute a function of the distance between the input units and the stored proto-
types (p = 4 in the example). On top of the system, C2 cells perform a MAX operation
over the whole visual field and provide the final encoding of the stimulus, constituting
the input to the svM classifier. The difference to standard HMAX lies in the connectiv-
ity from C1—S2 layer: While in standard HMAX, these connections are hardwired to
produce 256 2 X 2 combinations of C1 inputs, they are now learned from the data.
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3.2 Feature Learning

As Fig. 5 makes clear, the challenge is to learn a set of features in the S2 layer
that reliably permits the system to detect image patches belonging to a face
and not be confused by non-face patterns, even though objects from the two
classes can cause very similar activations on the C1 level (Fig. 1). In general, the
learned features already show a high degree of specificity for faces and are not
confused by simultaneously appearing backgrounds. They thus appear to offer a
much more robust representation than the features in standard HMAX.

Using the learned face-specific features leads to a tremendously improved
performance (Fig. 4), even outperforming the “AI” system. This demonstrates
that the new features reliably respond to face components with high accuracy
without being confused by non-face backgrounds.

3.3 Parameter Dependence

The results in Fig. 4 were obtained with a dictionary of n = 480, m = 120 and
p = 5 features. This choice of parameters provided the best results. Fig. 6 (bot-
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tom) shows the dependence of the model’s performance on patch size p and the
percentage of face area covered by the features (the area taken up by one fea-
ture p? times the number of patches extracted per faces m divided by the area
covered by one face). As the percentage of the face area covered by the features
increases, the overlap between features should in principle increases. Features of
intermediate sizes work best?: First, compared with large features, they probably
have more flexibility in matching a greater number of faces. Second, compared
to smaller features they are probably more selective to faces. Those results are in
good agreement with [10] where gray-value features of intermediate sizes where
shown to have higher mutual information. Similarly, performance as a function
of the number of features n show first a rise with increasing numbers of features
due to the increased discriminatory power of the feature dictionary. However,
with large features, overfitting may occur. Fig. 6 (top) shows performances for
p=2,5,7,10,15,20 and n = 100.

4 Discussion

In this paper, we have applied a model of object recognition in cortex to a real-
world object recognition task, the detection of faces in natural images. While
HMAX has been shown to capture the shape tuning and invariance properties from
physiological experiments, we found that it performed very poorly on the face

3 5x5 and 7 x 7 features for which performances are best correspond to cells’ receptive
field of about a third of a face.
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detection task. Because visual features of intermediate complexity in HMAX were
initially hardwired, they failed to show any specificity for faces vs. background
patterns. In particular, for an image containing a face on a background pattern,
the activity of some (C2) top units could be due to image parts belonging to the
face. For others, a part of the background could elicit a stronger activation than
any part of the face thus interfering with the response that would have been
caused by the face alone. This led to poor generalization performance.

Extending the original model, we proposed a biologically plausible feature
learning algorithm and we showed that the new model was able to outperform
standard HMAX as well as a benchmark classical face detection system similar
to [4]. Learned features therefore appear to offer a much more robust represen-
tation than the non-specific features in standard HMAX and could thus play a
crucial role in the representation of objects in cortex.

Interestingly, we showed that features that were chosen independently of
any task (7. e., independently of their ability to discriminate between face and
non-face stimuli or between-class discrimination) produced a powerful encoding
scheme. This is compatible with our recent theory of object recognition in cortex
[2] in which a general, i.e., task-independent object representation provides input
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to task-specific circuits. We would expect the same features to be useful for
recognition tasks at different levels (i.e., identification), possibly with different
weights, and we intend to explore these questions further.

Our proposed mechanisms for learning object-specific features is partially su-
pervised since features are only extracted from the target object class. However,
preliminary results using unsupervised learning (n = 200 features, p = 5, learned
from 10,000 face parts and 10,000 non-face parts) have produced encouraging
results. As Fig. 7 makes clear, a system using the features learned with k-means
over face and non-face stimuli performs slightly worse than the systems using
features extracted from face parts only. However, weeding out non-selective fea-
tures by keeping only the 100 most discriminant features (as given by their ROC
value) is enough to bring the system at a higher level. It is worth emphasiz-
ing that selecting features based on their mutual information produced similar
results. We are currently exploring how this feature selection can be done in a
biologically plausible way.

Modelling the biological mechanisms by which neurons acquire tuning prop-
erties in cortical areas was not the scope of the present paper. Rather, we focused
on the type of computation performed by cortical neurons. We proposed a 2-
step learning stage where an object representation is first learned and then a
strategy is selected. For simplicity, we chose the (non-biological) k-means algo-
rithm to learn features that provide a suitable representation independently of
any task. While it is unlikely that the cortex performs k-means clustering, there
are more plausible models of cortical self-organization that perform very simi-
lar operations in a biologically more plausible architecture. It should be easy to
replace with a more biologically plausible linear classifier the svMm classifier we
have used here, while accounting well for the sharp class boundary exhibited by
some category-specific neurons in prefrontal cortex [7].
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