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Abstract. Humans can recognize biological motion from strongly impoverished 
stimuli, like point-light displays. Although the neural mechanism underlying 
this robust perceptual process have not yet been clarified, one possible explana-
tion is that the visual system extracts specific motion features that are suitable 
for the robust recognition of both normal and degraded stimuli. We present a 
neural model for biological motion recognition that learns robust mid-level mo-
tion features in an unsupervised way using a neurally plausible memory-trace 
learning rule. Optimal mid-level features were learnt from image motion se-
quences containing a walker with, or without background motion clutter. After 
learning of the motion features, the detection performance of the model sub-
stantially increases, in particular in presence of clutter. The learned mid-level 
motion features are characterized by horizontal opponent motion, where this 
feature type arises more frequently for the training stimuli without motion clut-
ter. The learned features are consistent with recent psychophysical data that in-
dicates that opponent motion might be critical for the detection of point light 
walkers.  

1   Introduction 

Humans can recognize biological motion (e.g. human actions like walking and run-
ning) accurately and robustly; even from stimuli consisting only of a small number of 
illuminated dots that move like the joints of a human actor (“point light walkers”) [6]. 
The neural mechanism that underlies the robust generalization from normal to point-
light stimuli remains largely unclear. A possible explanation is that the brain extracts 
specific motion features that are shared by both stimuli classes. The nature of these 
features is unknown, and it has been discussed whether they are based predominantly 
on motion or form information [7]. In a recent study, combining methods from image 
statistics and psychophysical experiments, it was shown that robust recognition can be 
accomplished based on mid-level motion features [2].  

Neurophysiological studies in monkeys and imaging studies in humans suggest that 
the perception of biological movements and actions involves both the ventral and the 
dorsal visual processing stream (see [5] for a review). A recent computational model 



242 R. Sigala et al. 

 

for biological motion recognition tries to account for a variety of the existing experi-
mental data using relatively simple physiologically-plausible mechanisms [5]. The 
model is based on a feed-forward architecture which has been derived by extending a 
“standard model” (SM) for the recognition of stationary objects in the visual cortex 
[8]. Like other models for object recognition in the cortex [4, 8], our model represents 
complex movements in terms of learned prototypical patterns that are encoded by 
model neurons that respond to complex body shapes.  

We apply in this paper a new biologically inspired algorithm, the “Memory Trace” 
(MeT) learning rule, to optimize model mid-level features for motion recognition. 
Originally the MeT algorithm was devised for the learning of mid-level in the context 
of the SM [9]. It has been demonstrated that by application of this learning algorithm 
the detection performance of the model for real-world stimuli could be substantially 
improved, resulting in performance levels which exceed the ones of several state-of-
the-art computer vision systems for object detection [9]. Here we use the MeT algo-
rithm in the context of a model for the recognition of biological movements and ac-
tions in order to optimize mid-level motion features for the detection of walkers.  

Our paper first describes the model and the learning algorithm. We then present the 
results for the detection of walkers and show that learning of optimized mid-level 
motion features improves the performance, in particular in presence of motion clutter.  

2   Methods 

2.1   Model for Biological Motion Recognition 

Our model corresponds to the motion pathway of the model in [5]. It consists of a 
hierarchy of neural detectors that are selective for motion features with different lev-
els of complexity (fig. 1a). The first level of the model is formed by local motion 
energy-detectors whose responses are derived from the optic-flow fields of the stimuli 
assuming physiologically plausible tuning characteristics (see [5]). The model con-
tains detectors for 70 x 43 different spatial positions and for 4 different directions. It 
turned out that for the feature learning it is critical that the outputs of the motion en-
ergy units are temporally smooth. We assume a simple linear low-pass filter with a 
time constant of τ = 228 ms, corresponding to the differential equa-
tion ( ) ( ) ( )u t r t u tτ = −& , where r(t) is the motion energy signal and u(t) the detector 

output. In the second layer, motion simple (MS2) units encode prototypical motion 
features of intermediate complexity. They combine the responses of the motion en-
ergy detectors with different direction preferences on the previous layer within a lim-
ited spatial region. These neurons are modeled by Gaussian radial basis function 
(RBF) units. The centers ck of these RBFs are determined by the MeT algorithm. The 
responses of these neural detectors depend on the similarity of the local motion en-
ergy patterns from the present stimulus, that is given by the vectors ek, and these 

learned centers through the relationship: 2 2exp( / 2 )
k k k

x = − σe c . For modeling posi-

tion-invariant recognition, each mid-level motion detector is realized multiple times 
centered at different random spatial locations. Motion complex (MC2) units pool the 
responses of all mid-level motion detectors of the same type within a limited spatial 
receptive field using a MAXIMUM operation. The responses of these units are par-
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tially position-invariant. They define the input of a classifier that detects the presence 
or absence of a walker in the stimulus sequence. We tested different types of classifi-
ers (cf. section 2.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. a) Illustration of our model. See text for explanation. b) Activations of the local motion 
detectors tuned to 4 different directions (white arrows) for a walking frame shown as grey-
coded maps. c) Optic-flows, with directions encoded as grey levels, for two positive (top) and 
two negative (bottom) examples. Zero motion energy is encoded by the dotted background 
(white dots on black). 

2.2   “Walker-Detection” Task 

The performance of our system was evaluated using a walker detection task. We used 
stimuli with uniform background, and with motion clutter. Stimuli were generated 
from five actors whose joint trajectories were tracked from videos (one gait cycle with 
42 frames) [5]. The walking sequences of five different actors were used as positive 
examples, and other human actions (e.g. running, boxing, jumping) as negative exam-
ples. We selected randomly different sets of these sequences for training and testing 
the system. To introduce motion clutter for the same stimuli we added 100 moving 
squares (3x3) at random positions in each stimulus frame, defining random motion 
with uniform distribution of motion energy over the different directions.   

2.3   Feature-Learning with the “Memory Trace” (MeT) Algorithm 

Motion features with intermediate complexity were learnt using the MeT algorithm 
[9] (cf. Fig. 1a). The MeT algorithm is a biologically inspired mechanism for the 
unsupervised learning of frequently occurring features. The algorithm is inspired by 
previous work [3] that exploits a simple trace rule for the learning of shift invariance. 
Our trace rule assumes that the MS2 units keep record of their recent synaptic activity 
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by an internal memory trace signal. In addition, it is assumed that the different  
features compete for the activations that a given stimulus produces. Successful activa-
tion of a feature results in an increase of its memory trace signal. Otherwise, the trace 
signal decays. Features whose memory trace falls below a fixed threshold are elimi-
nated, and replaced by new features. New features are generated by choosing a ran-
domly positioned local region in the visual field and taking the outputs of the motion 
energy detectors within this region for the present stimulus as feature vector.  
(See [10] for details). Learning is online since new features can be selected for each 
training step. 

2.4   Classification Stage 

To test the validity of the learned mid-level features for the detection of biological 
movements, we classified the outputs of the MC2 layer using different types of classi-
fiers: 1) The “Maximally Activated Unit” (MAU) classifier that is biologically plausi-
ble. It corresponds to a radial basis function unit whose center is trained with the 
output signals from the MC2 level for the learned movements. If the activation of this 
unit is higher than a particular threshold the stimulus is classified as the particular 
action. Otherwise the classification result is negative. 2) k-Nearest Neighbor (k-NN), 
a standard technique for classification, was also implemented using RBF units whose 
centers were learned in the same way as the centers of the MAU classifier. During 
classification, the label of a test example is set to the label of the majority of the k 
nearest neighbors of the training set (we tested for k = 1 and k = 5). 3) Support Vector 
Machine (SVM) classifiers [13], as used in many recent machine vision systems (e.g. 
[9]). Although SVMs are not biologically plausible, they provide a typically well-
performing classification back-end, which is useful to derive a measure for the quality 
of the learned features. 

3   Results 

Performances (Area Under the Receiver Operator Characteristic (ROC) curve) for all 
classifiers.are shown in Table 1 using the MeT algorithm (MeT) without and with 
motion clutter in the background (Clutter). For comparison we also show the results 
for stimuli in motion clutter when the mid-level features were defined by selecting 
randomly positioned regions from the stimuli (Rand)1.  

Fig. 2 (I) and (II) show the “best” features for the walker detection task for the 
simulations without and with motion clutter. An important observation is that many of 
these best features are characterized by horizontal opponent motion. The ROC curves 
for the three test conditions are shown in Fig. 2 (III).  Performance after training with 
the MeT rule without clutter is almost perfect. This is not only true for state-of-the-art 
classifiers but also for simpler classifiers such as NN and MAU. Even in presence of 
clutter the MeT rule is significantly better than for randomly selected features. (The 5-
NN outperforms SVM classifier, probably due to overfitting). This robust perform-
ance is consistent with recent results from the shape pathway [9]. It suggests a key 
                                                           
1 Since we were interested mainly in recognition with cluttered background, we did not com-

pare the MeT algorithm with a random selection of features for the other case. 
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role for plasticity in intermediate and higher visual areas of cortex for the realization 
of robust recognition. 

Table 1. Performances (Area under the ROC) of the system for walker detection. Bold numbers 
indicate the classifier that gives the best performance for each experiment 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. I) Best four features for the stimuli without and with (II) clutter. Features were ranked 
according to the area under the ROC (numbers on top) computed separately for each individual 
feature. Features are plotted as optic-flow fields over the corresponding spatial windows.  Black 
arrows indicate the values for local motion detectors that are selective for motion from left to 
right, and grey arrows indicate detectors selective for motion in opposite direction. The arrow 
length indicates the corresponding detector activation. III) ROC curves for the system with 
SVM classifier, for the MeT algorithm without (a) and with clutter (b), and for random selec-
tion of features (c).  

4   Discussion 

We have presented simulations using local learning rule for the optimization of mid-
level motion features in a hierarchical model for the recognition of biological move-
ments. The most important contribution of this rule compared to other approaches 
(e.g. [11]) relies in its neural plausibility. We found that learning of optimized mid-
level features substantially improves the performance of the model, in particular in 
presence of motion clutter. Similar results have been obtained with a model for shape 
processing in the ventral pathway using the same learning rule. This suggests a key 
role of visual experience and plasticity throughout the whole visual cortex. Further 
work in this direction should implement neurally plausible mechanisms for the classi-
fication stage. 

In addition, we found that for the detection of walkers, our algorithm learned opti-
mized motion features that are characterized by horizontal opponent motion, for train-
ing with and without motion clutter. In principle, the same technique could be applied 

Performances (Area Under the ROC) 
Mode MAU SVM k-NN (k=1) k-NN (k=5) 

MeT 0.977 0.999 0.981 0.962 
MeT + Clutter 0.869 0.912 0.957 0.972 
Rand + Clutter 0.726 0.795 0.876 0.890 

0

0
15

150
151° 2°

3° 4°

a) b)

c)
1° 2°

3° 4°

15 0 15

1

TP

0 1

I

FP

a) No Bckg (MeT)      
b) Clu Bckg (MeT) 
c) Clu Bckg (Rand)

0.96

0.953

0.95

0.952

0.91 0.90

0.89 0.86

0 II IIIArea under the ROC



246 R. Sigala et al. 

 

to optimize form features for the recognition of biological movements from body 
postures [2]. The importance of opponent motion features seems to be supported by 
psychophysical an imaging results that show that opponent horizontal motion might 
be a critical feature for the recognition of walkers, and degraded point light stimuli. 
Electrophysiological experiments indicate the existence of opponent motion-selective 
neurons, e.g. in monkey areas MT and MST [1, 12].  
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