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Abstract

We present a biologically-motivated system for the
recognition of actions from video sequences. The approach
builds on recent work on object recognition based on hi-
erarchical feedforward architectures [25, 16, 20] and ex-
tends a neurobiological model of motion processing in the
visual cortex [10]. The system consists of a hierarchy of
spatio-temporal feature detectors of increasing complexity:
an input sequence is first analyzed by an array of motion-
direction sensitive units which, through a hierarchy of pro-
cessing stages, lead to position-invariant spatio-temporal
feature detectors. We experiment with different types of
motion-direction sensitive units as well as different system
architectures. As in [16], we find that sparse features in in-
termediate stages outperform dense ones and that using a
simple feature selection approach leads to an efficient sys-
tem that performs better with far fewer features. We test the
approach on different publicly available action datasets, in
all cases achieving the highest results reported to date.

1. Introduction

Understanding the perception of actions in both humans
and animals is an important area of research crossing the
boundaries between several scientific disciplines from com-
puter science to brain science and psychology. Motion
recognition is one of the most challenging recognition prob-
lems in computer vision with important applications such as
surveillance and human-machine interaction. At the same
time, our understanding of the brain mechanisms responsi-
ble for the recognition of actions has progressed over the
past decades (see [1] for a recent review) and a body of ex-
perimental data is growing rapidly.
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The visual cortex is organized in two different pathways:
a ventral stream which is usually thought of as dealing
mainly with the processing of shape information and a dor-
sal stream involved with the analysis of motion informa-
tion. Interestingly, the organization of these two pathways
is very similar [23]. Their organization is hierarchical; aim-
ing, in a series of processing stages, to gradually increase
both the selectivity of neurons along with their invariance
to 2D transformations (see [10]). In parallel, the size of
the receptive fields of the neurons, i.e. the part of the visual
field that if properly stimulated may elicit a response from
the neuron, increases along the hierarchy.

These two pathways originate in the primary visual cor-
tex (V1) where one can find two populations of cells: cells
which are tuned to spatial orientations (e.g. a static vertical
bar) and project to areas V2 and V4 of the ventral stream,
and cells which are sensitive to directions of motions (i.e. a
bar at a specific orientation and moving in a direction per-
pendicular to its orientation) and project to area MT and
MST in the dorsal stream. The analysis of motion informa-
tion proceeds in MT and MST where neurons have substan-
tial position and scale invariance and are tuned to optical
flow patterns, see [10]. It has been reported in these areas
that neurons are selective for complex optical flow patterns,
e.g. translation flows or opponent motion.

In this work, we speculate that neurons in intermediate
visual areas of the dorsal stream such as MT, MST and
higher polysensory areas are tuned to spatio-temporal fea-
tures of intermediate complexity (see Section 2), which pool
over afferent input units tuned to different directions of mo-
tion. This includes, but is not limited to, the optical flow
neurons described above. Finally in higher polysensory ar-
eas, one can find neurons which are tuned to short chunks
of actions (see [22] for a review).

Motivated by the recent success of biologically inspired
approaches for the recognition of objects in real-world ap-
plications [25, 16, 20], we here extend a neurobiological
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model [10] of motion processing in the dorsal stream of the
visual cortex. The model has only been applied so far to
simple artificial stimuli [10, 28].

Our work is motivated by the similarity in the organiza-
tion of the shape and motion pathways in the visual cortex
and we here try to apply computational mechanisms that
have proved to be useful for the recognition of objects to
the recognition of actions. The idea of extending object de-
scriptors to actions has already been shown to be a good
one, as illustrated by the excellent performance in the non-
biologically motivated system by Dollar et al. [5].

1.1. Our approach

Our approach is closely related to feedforward hierarchi-
cal template matching architectures that have been used for
the recognition of objects in still images. These systems
have been around for quiet some time now, starting with
the work of Fukushima [8] and LeCun et al. [12]. Here we
follow the more recent framework using scale and position
invariant C2 features [25, 16] that originated with the work
of Riesenhuber & Poggio [21].

C2 shape features In previous work [25, 16], a still gray-
value input image is first analyzed by an array of Gabor fil-
ters (S1 units) at multiple orientations for all positions and
scales. Processing is then hierarchical: feature complex-
ity and position/scale invariance are gradually increased by
alternating between a template matching and a max pool-
ing operation. That is, at the C1 stage some tolerance to
small deformations is obtained via a local max over neigh-
borhoods of S1 units (in both position and scale).

Next, template matching is performed over the C1 maps,
creating thousands of S2 maps. At each position (and scale)
a patch of C1 units centered at that position (scale) is com-
pared to each of d1 prototype patches. Each prototype cor-
responds to a vector of size 4n2 which is obtained by crop-
ping an n×n (n = 4, 8, 12, 16) patch of C1 units at a given
location and all 4 orientations. These d1 prototype patches
represent the intermediate-level features of the model, and
are randomly sampled from the C1 layers of the training
images in an initial feature-learning stage.

At the top of the hierarchy, a vector of d1 scale and posi-
tion invariant C2 features is obtained by computing a global
max for each of the d1 (multi-scale) S2 feature maps. These
feature vectors are finally passed to a linear SVM classifier
to obtain a classification label. Here we propose to extend
this approach to the recognition of actions.

Motion-direction sensitive S1 units To extend the C2

framework to the analysis of motion, we start by empiri-
cally searching for a suitable representation for the S1 units.
We compare 3 types of motion-direction sensitive S1 units:

a) Gradient-based features (It/Ix, It/Iy); b) Optical flow
based features; c) Space-time oriented filters [29], which
have been shown to be good models of motion-sensitive
simple cells in the primary visual cortex [15]. Details about
how the 3 different S1 unit types were computed is given
in Section 2.1. Interestingly, we find that the optical flow
features previously used in [10, 4, 28] lead to worse perfor-
mance than the gradient-based features and the space-time
oriented filters.

Learning sparse spatio-temporal motion C2 features
Recently, Mutch & Lowe showed that C2 features can be
sparsified leading to a significant gain in performance [16]
on standard object recognition databases (see also [20]). In
addition, they also showed that applying a simple feature se-
lection technique to the C2 feature responses can lead to an
efficient system which can perform better with less features.

Motivated by these findings, we experiment with the
zero-norm SVM [31] feature selection technique. We find
that a more compact C2 feature representation can lead to
significant decrease in the computation time taken by the
overall system without sacrificing accuracy.

Adding new S3 and C3 stages Finally we experiment
with an extension of the hierarchy which is specific to mo-
tion processing, i.e. to include time invariant S3 and C3

units. Preliminary experiments suggest that these units
sometimes improve performance, but not significantly.

1.2. Related work

Typically, computer vision systems for the recognition
of actions have fallen into two categories. One class of ap-
proaches relies on the tracking of object parts [32, 19, 3].
While these approaches have been successful for the recog-
nition of actions from articulated objects such as humans
(see [9] for a review), they are not expected to be useful
in the case of less articulated objects such as rodents [5].
The other common class of approaches is based on the pro-
cessing of spatio-temporal features, either global as in the
case of low-resolution videos [33, 6, 2] or local for higher
resolution images [24, 5, 7, 18].

Our approach falls in the second class of approaches to
action recognition. It extends an earlier neurobiological
model of motion processing in the dorsal stream of the vi-
sual cortex by Giese & Poggio [10]. While this model has
been successful in explaining a host of physiological and
psychophysical data, it has only been tested on simple arti-
ficial stimuli such as point-light motion stimuli [10, 28]. In
particular, the model of [10] is too simple to deal with real
videos. It lacks translation invariance and uses a limited
handcrafted dictionary of features in intermediate stages.
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Figure 1. Sketch of the system (see text for details).

1.3. Main contributions

Our main contribution is the application of a neurobio-
logical model of motion processing to the recognition of ac-
tions in complex video sequences and the surprising result
that it can perform on par or better than existing systems
on varying datasets. Indeed none of the existing neurobi-
ological models of motion processing have been used on
real-world data [10, 13, 4, 28, 11]. As recent work in ob-
ject recognition has indicated, models of cortical processing
are starting to suggest new algorithms for computer vision
[25, 16, 20]. Conversely applying biological models to real-
world scenarios should help constrain plausible algorithms.

In order to convert the neuroscience model of [10] into
a real computer vision system, we altered it in two signifi-
cant ways: We propose a new set of motion-sensitive units
which is shown to perform significantly better and we de-
scribe new tuning functions and feature selection techniques
which build on recent work on object recognition.

2. System overview

Our system is based on a hierarchy of increasingly com-
plex and invariant space-time feature detectors. By alter-
nating between a local maximum operation to increase the
tolerance to local deformations (such as translation) and a
template matching operation to increase the complexity of
the feature detectors, the system gradually builds a repre-
sentation which is tolerant to 2D changes (e.g. the position

of the actor in the visual field) yet specific enough so as to
allow fine discrimination between similar actions (e.g. jog-
ging and running), see section 3.3.

2.1. S1 units

The input to the system is a gray-value video sequence
that is first analyzed by an array of S1 units at all positions
(see Fig. 1). In [25, 16] for the recognition of static objects,
Gabor filters at multiple orientations were used. To extend
these approaches to the analysis of motion, we experiment
with three different types of S1 units.

Space-time gradient-based S1 units: These features are
based on space and time gradients, which were used for in-
stance, in the system by Zelnik-Manor & Irani [33]. We
compute the spatial gradients along the x and y axis for each
frame, denoted Ix and Iy as well as the temporal gradient
of adjacent frames It. Motivated by optical-flow algorithms
that are based on the constant-brightness assumption and by
recent work on video matching [26], we consider two types
of S1 units: |It/(Ix + 1)| and |It/(Iy + 1)|. The absolute
value is taken to make features invariant to contrast reversal.

Optical flow based S1 units: A second set of S1 units
was obtained by computing the optical flow of the input im-
age sequence using Lucas & Kanade’s algorithm [14]. We
denote θ and ν, the direction and the magnitude of the op-
tical flow at each pixel position in the current frame. As



in [10], S1 unit responses were obtained by applying the
following equation:

b(θ, θp) = {1
2
[1 + cos(θ − θp)]}q × exp(−|ν − νp|), (1)

where θp determines the preferred direction of the S1 unit
and νp is its preferred speed. We use 4 directions θp =
0o, 90o, 180o, 270o and two speeds, both an intermediate
speed (νp = 3) and a higher speed (νp = 6). The constant
q, which controls the width of the tuning curve, was set to
q = 2 as in [10, 4]. Taking all the possible combinations of
νp and θp, we obtained 8 types of S1 units.

Space-time oriented S1 units: These units constitute the
most direct extension to the object recognition systems by
[25, 16]. In these approaches, S1 units corresponded to 2D
Gabor filters at multiple orientations. A natural way to ex-
tend these filters to the analysis of motion is to add a third
temporal dimension to their receptive fields. Such mod-
els have been shown to agree quantitatively with the tuning
properties of simple cells in the primary visual cortex which
are motion-direction sensitive [15].

Several specific implementations of such motion-
direction sensitive cells have been proposed (see [10] for
references). Here we used the popular implementation by
Simoncelli & Heeger which uses (3rd) derivatives of Gaus-
sians [29]. As for the optical-flow S1 units, we used 8
space-time filters tuned to 4 directions (0o, 90o, 180o, 270o)
and 2 speeds (3 and 6 pixels/frame). The size of the recep-
tive fields of the corresponding S1 units was 9(pixels) ×
9(pixels)× 9(frames). The filter outputs were half-wave
rectified.

2.2. C1 units

Beyond the S1 stage our system follows closely the ap-
proach by [25]. At the C1 stage, down-sampling is per-
formed for each S1 type by computing a local max over
an 8 × 8 grid of S1 units with the same selectivity (e.g.
same preferred motion direction and speed in the case of
the space-time oriented S1 units). C1 units are computed
every 4 pixels (each C1 layer thus has 1/4 the size of the
input frame). As a result some tolerance to small shifts is
gained during the transition from the S1 to the C1 stages.

2.3. S2 units

The S2 stage matches the C1 maps of the current frame
with d1 stored templates that were extracted during a train-
ing phase (see below). At every position in the C1 layer, we
perform a template matching operation between the current
patch of C1 units centered at that position and each of the d1

stored S2 templates. These stored templates constitute the
intermediate-level features of the model, and are randomly
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Figure 2. An illustration of the dense C2 features [25] (a) vs. the
sparse C2 features [16] (b).

sampled from the C1 layers of frames of training videos in
an initial feature-learning stage. As in [25, 16], we used
n × n templates (with n = 4, 8, 12, 16). We denote by l
the number of S1 types (l = 2, 8, 8 for the gradient based,
optical flow based and space-time oriented S1 units respec-
tively). The matching is done across all C1/S1 types and
each template thus has ln2 coefficients.

To obtain the d1 S2 templates, we randomly extract 500
C1 patches from training videos for each of the action cate-
gory and for each of the 4 template sizes. The extraction is
completely random, i.e. we selected patches extracted from
random frames and random training sequences and at ran-
dom X, Y positions within the frame. This leads to 2,000
stored templates per action category and a total number of
templates d1 = 10,000 - 18,000 extracted during training
(the datasets used contains 5-9 action categories).

In our experiments (Section 3.3), we compare two alter-
native S2-unit response functions for the template match-
ing operation: the dense Euclidean distance adapted from
[25] and the sparse normalized dot-product by [16]. For
the dense features [25], the template matching is computed
over all ln2 coefficients of the template. Conversely, in the
sparse case, only the strongest coefficients are stored for
each pixel location of the template. Thus only n2 sparse
coefficients are stored. The difference between dense and
sparse C2 features is illustrated in Fig. 2.

Another difference is in terms of the form taken by the
template matching procedure. Let x denote a C1 patch from
the current frame and let wk denote the k-th stored template
(prototype). For the sparse features of [16], we use the nor-
malized dot-product, where the response yk of the S2 unit,
which corresponds to the C1 patch x is given by:

yk =
x ·wk

||x|| × ||wk||
. (2)

For the dense features of [25], we simply compute the
Euclidean distance, i.e. the response yk is given by:

yk = −||x−wk||. (3)



2.3.1 C2 units

In this stage, a global max across all positions is taken for
each S2 feature maps. With d1 stored templates during
training, the corresponding d1 S2 features maps obtained
after matching between the C1 maps and the d1 stored
templates thus lead to d1 spatio-temporal C2 units. More
specifically, for each one of the d1 S2 feature maps we ob-
tain one scalar, which is the maximum value in the map.

2.3.2 S3 and C3 stage

While the C2 units achieve a high degree of spatial invari-
ance, they lack temporal invariance. We experimented with
the addition of a new layer that encodes the content of the
video with a higher degree of temporal invariance. These
C3 features are computed, as before, by performing a tem-
plate matching stage to create S3 features, followed by a
pooling stage that creates C3 features.

The prototypes used to compute the S2 features are con-
fined to a small patch of video sequence. This cannot
be transferred directly to form prototypes for the S3 units
since, unlike the retinotopic C1 features, the C2 features are
unordered. Instead, we randomly select, for each S3 pro-
totype, a random subset of the C2 features (half the total
number of C2 features). S3 units are then obtained by con-
sidering 7 consecutive frames at a random location in the
input sequence and for each frame, storing the coefficients
of the top 50% input units). In our experiments we sample
d2 = 300 S3 templates.

For a new input video, the S3 unit responses are obtained
by computing the similarity between the d2 stored proto-
types and the video for all frames (temporal matching). The
C3 units are then computed, for each video sequence, as the
maximum response over the duration of the video. This re-
sults in d2 C3 units per video regardless of the length of the
video. The location of the maximum response is discarded
as in the C2 unit computation.

2.3.3 Classification stage

The final classification stage is a linear multi-class SVM
classifier trained using the all-pairs method. When using
C2 features as input to the classifier, we first compute the
C2 features over a random set of n = 500 frames for each
action category in the training set. For a test video, we thus
obtain a classification label for each frame. A classification
label for the entire video was obtained by majority voting.

When using the C3 features as input to the classifier, we
compute the C3 units for the entire video for all the videos
in the training set. For a test video, a single label is obtained
for each one of the videos.

2.3.4 C2 feature selection with zero-norm SVM

As in [16], we have performed experiments with the zero-
norm SVM [31] of Weston et al. Instead of regularizing the
norm of the hyperplane ||w||2, the classifier tries to opti-
mize the objective function:

||w||0 + C
N∑

i=1

ζi, such that (wT xi + b) > 1− ζi (4)

The zero norm ||w||0 here indicates the count of the feature
used. In practice this is done in multiple rounds. At each
round an SVM classifier is trained on the pool of C2 features
and the training set is re-weighted using the weights of the
trained SVM. Typically this leads to sparser SVM weights
at each stage. We compare the performance of both the full
and compact feature sets in Section 3.3.

3. Experiments
We have conducted an extensive set of experiments to

evaluate the performance of the proposed action recogni-
tion system on three publicly available datasets: two human
action datasets (KTH and Weizmann) and one mice action
dataset (UCSD). Details about the datasets are given below.

3.1. Datasets

KTH human : The KTH human action dataset [24] con-
tains six types of human actions: walking, jogging, running,
boxing, hand waving and hand clapping. These actions are
performed several times by twenty-five subjects in four dif-
ferent conditions: outdoors (s1), outdoors with scale vari-
ation (s2), outdoors with different clothes (s3) and indoors
with lighting variation (s4). The sequences average about
4 seconds in length. We down-sampled the sequences to a
spatial resolution of 160 × 120 pixels. We split the dataset
as: actions of 16 randomly drawn subjects for training and
actions of the remaining 9 subjects for testing. The system
performance is based the average of five random splits.

Weizmann human: The Weizmann human action dataset
[2] contains eighty-one low resolution (180 × 144 pixels)
video sequences with nine subjects performing nine actions:
running, walking, jumping-jack, jumping forward on two
legs, jumping in place on two legs, galloping-sideways,
waving two hands, waving one hand, and bending. For
training we use the actions from 6 random subjects (6
videos per action category), the actions of the remaining
3 subjects are then used for testing. The size of the sub-
ject in this dataset is about half the size of the subject in the
KTH human action dataset. However, we run experiments
on the two sets using the same parameters. The system per-
formance is evaluated by the average of five random splits.



Figure 3. Sample videos from the mice dataset (1 out 10 frames displayed with a frame rate of 15 Hz) to illustrate the fact that the mice
behavior is minute.

UCSD mice: The UCSD mice behavior dataset [5] con-
tains seven subsets, each being recorded at different points
in a day such that multiple occurrences of actions within
each subset vary substantially. There are five actions in to-
tal: drinking, eating, exploring, grooming and sleeping. The
sequences have a resolution of 240 × 180 pixels and a du-
ration of about 10 seconds. This dataset presents a double
challenge. First the actions of the mice are minute (see Fig.
3 for examples) and second the background of the video is
typically noisy (due to the litter in the cage). Each split, we
randomly choose 4 subsets for training and the remaining 3
subsets for testing. The system performance is the average
of five random splits.

Preprocessing We preprocessed the datasets to speed-up
our experiments: On the KTH human and UCSD mice
datasets we used the openCV GMM background subtrac-
tion technique based on [30]. In short, a mixture of Gaus-
sians model was used to identify the foreground pixels of
each frame. From the foreground mask, we extracted a
bounding box (full height and half the width of the frame)
for each frame. For the Weizmann Human dataset, the
bounding boxes were extracted directly from the foreground
masks provided with the dataset.

3.2. Benchmark algorithms

For benchmark we use the algorithm by Dollar et al.
which has been compared favorably to several other ap-
proaches [33, 6, 18] on the KTH human and UCSD mice
datasets described earlier. In short, the approach de-
tects interest points in the spatio-temporal domain and ex-
tracts cuboids, i.e. spatio-temporal windows of pixel val-
ues, around each point detected. These cuboids are further
matched to a dictionary of cuboid-prototypes learned from
sequences in the training set. Finally, a vector description
is obtained by computing the histogram of cuboid-types of
each video, and a SVM classifier is used for classification.
The code for [5] was graciously provided by Piotr Dollar.

3.3. Results

We have studied several aspects and design alternatives
for the system. First we show that zero-norm feature selec-
tion can be applied to the C2 units and that the number of
features can be reduced from 12, 000 down to ≈ 500 with-
out sacrificing accuracy. We then proceeded to apply feature
selection for all the remaining experiments and compare
different types of motion-direction sensitive input units. We
also compared the performance of sparse vs. dense C2 fea-
tures and present initial preliminary results with the addition
of a high-level C3 stage.

3.3.1 Selecting C2 features with the zero-norm SVM

The following experiment looks at feature selection and in
particular how the performance of the system depends on
the number of selected features. For this experiment, we
used space-time oriented S1 units and sparse C2 features.
Performance is evaluated on the four conditions of the KTH
dataset.1 In the first iteration, all 12, 000 patches of C1 units
extracted from the training set of images were used to com-
pute the C2 features. In each of the following iteration, only
features with a weight |wi| > 10−3 were selected.

Table 1 compares the performance of each round. In
agreement with previous results on object recognition [16],
we found that it is possible to reduce the number of C2 fea-
tures quiet dramatically (from ∼ 104 down to ∼ 102) with
minimal loss in accuracy. This is likely due to the fact that
during learning, the S2 prototypes were extracted at ran-
dom locations from random frames. It is thus expected that
most of the prototypes should belong to the background and
should not carry much information about the category of the
action. In the following, feature selection was performed on
the C2 features for all the results reported.

1For computational reason the performance reported is based on a sin-
gle split of the KTH dataset.



1 5 10 15 20
s1 No. feat. 12000 3188 250 177 158

accu. 91.7 91.7 89.3 88.9 90.3
s2 No. feat. 12000 4304 501 340 301

accu. 86.6 86.6 85.2 87.0 85.7
s3 No. feat. 12000 3805 392 256 224

accu. 90.3 90.7 89.4 88.4 88.0
s4 No. feat. 12000 3152 313 217 178

accu. 96.3 96.3 96.3 95.3 95.0
Avg accu. 91.2 91.3 90.1 90.0 89.8

Table 1. Selecting features: System performance for different
numbers of selected C2 features at rounds 1, 5, 10, 15 and 20
(see text for details).

[5] GrC2 OfC2 StC2

KTH s1 88.2 94.3 / 92.7 92.8 / 93.3 89.8 / 96.0
s.e.m. s1 ±1.9 ±1.7 /±3.2 ±2.8 /±2.9 ±3.1 /±2.1

KTH s2 68.3 86.0 / 86.8 80.7 / 83.1 81.3 / 86.1
s.e.m. s2 ±2.1 ±3.9 /±3.9 ±4.0 /±3.9 ±4.2 /±4.6

KTH s3 78.5 85.8 / 87.5 89.1 / 90.0 85.0 / 88.7
s.e.m. s4 ±2.9 ±2.7 /±3.3 ±3.8 /±3.5 ±5.3 /±3.2

KTH s4 90.2 91.0 / 93.2 92.9 / 93.5 93.2 / 95.7
s.e.m. s4 ±1.8 ±2.0 /±1.9 ±2.2 /±2.3 ±1.9 /±2.1

Avg 81.3 89.3 / 90.0 88.9 / 90.0 87.3 /91.6
s.e.m. Avg ±2.2 ±2.6 /±3.1 ±3.2 /±3.1 ±3.6 /±3.0

UCSD 75.6 78.9 / 81.8 68.0 / 61.8 76.2 / 79.0
s.e.m. ±4.4 ±4.3 /±3.5 ±7.0 /±6.9 ±4.2 /±4.1

Weiz. 86.7 91.1 / 97.0 86.4 / 86.4 87.8 / 96.3
s.e.m. ±7.7 ±5.9 /±3.0 ±9.9 /±7.9 ±9.2 /±2.5

Table 2. Comparison between three types of C2 features (gradient
based GrC2, optical flow based OfC2 and space-time oriented
StC2). In each column, the number on the left vs. right corre-
sponds to the performance of dense vs. sparse C2 features (see
text for details). s1, . . . s4 corresponds to different conditions of
the KTH database (see Section 3.1) and Avg to the mean perfor-
mance across the 4 sets. Below the performance on each dataset,
we indicate the standard error of the mean (s.e.m.).

3.3.2 Comparing different C2 feature-types

Table 2 gives a comparison between all three types of C2

features: gradient based GrC2, optical flow based OfC2

and space-time oriented StC2 features. In each column, the
number on the left vs. the right corresponds to the perfor-
mance of dense [25] vs. sparse [16] C2 features (see Section
2 for details). s1, . . . s4 corresponds to the different condi-
tions of the KTH database (see Section 3.1).

Overall the sparse space-time oriented and the gradient-
based C2 features (GrC2 and StC2) perform about the
same. The poor performance of the OfC2 features on the
UCSD mice dataset is likely due to the presence of the lit-
ter in the cage which introduces high-frequency noise. The
superiority of sparse C2 features over dense C2 features is
in line with the results of [16] for object recognition.

GrC3 OfC3 StC3

KTH s1 92.1 / 91.3 84.8 / 92.3 89.8 / 96.0
KTH s2 81.0 / 87.2 80.1 / 82.9 81.0 / 86.1
KTH s3 89.8 / 90.3 84.4 / 91.7 80.6 / 89.8
KTH s4 86.5 / 93.2 84.0 / 92.0 89.7 / 94.8

Avg 87.3 / 90.5 83.3 / 89.7 85.3 / 91.7
UCSD 73.0 / 75.0 62.0 / 57.8 71.2 / 74.0
Weiz. 70.4 / 98.8 79.2 / 90.6 83.7 / 96.3

Table 3. Comparison between three types of C3 units (gradient
based GrC3, optical flow based OfC3 and space-time oriented
StC3). In each column, the number to the left vs. the right cor-
responds to the performance of C3 features computed from dense
[25] vs. sparse [16] C2 features. The results are based on the per-
formance of the model on a single split of the data.

3.3.3 Comparing different C3 feature-types

We have started to experiment with high-level C3 fea-
tures. Table 3 shows some initial results with three differ-
ent types of motion-direction sensitive input units (see cap-
tion). Overall the results show a small improvement using
the C3 features vs. C2 features on two of the datasets (KTH
and Weiz) and a decrease in performance on the third set
(UCSD).

3.3.4 Running time of the system

A typical run of the system takes a little over 2 minutes per
video sequence (KTH human database, 50 frames, Xeon
3Ghz machine), most of the run-time being taken up by
the S2 + C2 computations (only about 10 seconds for the
S1 +C1 or the S3 +C3 computations). We have also exper-
imented with a standard background subtraction technique
[30]. This allows us to discard about 50% of the frame
thus cutting down processing time by a factor of 2 while
maintaining a similar level of accuracy. Finally, our system
runs in Matlab but could be easily implemented using multi-
threads or parallel programming as well as General Purpose
GPU for which we expect a significant gain in speed.

4. Conclusion
We have applied a biological model of motion process-

ing to the recognition of human and animal actions. The
model accounts only for part of the visual system, the dor-
sal stream of the visual cortex, where motion-sensitive fea-
ture detectors analyze visual inputs. It has also been sug-
gested [10] that another part of the visual system, the ven-
tral stream of the visual cortex, involved with the analysis of
shape may also be important for the recognition of motion
(consistent with recent work in computer vision [17] which
has shown the benefit of using shape features in addition to
motion features for the recognition of actions). Future work



will extend the present approach to integrate shape and mo-
tion information from the two pathways. Another extension
is to incorporate top-down effects, known to play an im-
portant role for the recognition of motion (e.g. [27]), to the
present feedforward architecture.
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