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Abstract 

We present a component-based, trainable system for  de- 
tecting frontal and near-frontal views of faces in still gray 
images. The system consists of a two-level hierarchy of Sup- 
port Vector Machine (SVM) classifers. On the first level, 
component classifers independently detect components of 
a face. On the second level, a single classifier checks i f  the 
geometrical configuration of the detected components in the 
image matches a geometrical model of a face. We propose 
a method for  automatically learning components by using 
3 - 0  head models. This approach has the advantage that 
no manual interaction is required f o r  choosing and extract- 
ing components. Experiments show that the component- 
based system is signij5cantly more robust against rotations 
in depth than a comparable system trained on whole face 
patterns. 

1. Introduction 

Over the past ten years face detection has been thor- 
oughly studied in computer vision research for mainly two 
reasons. First, face detection has a number of interesting 
applications: It can be part of a face recognition system, 
a surveillance system, or a video-based computer/machine 
interface. Second, faces form a class of visually similar ob- 
jects which simplifies the generally difficult task of object 
detection. 

In the following we give a brief overview of face de- 
tection techniques in still gray images. Since there are no 
color and motion cues available, face detection boils down 
to a pure pattern recognition task. A method for detecting 
faces in gray images by combining clustering techniques 
with neural networks is proposed in [15]. It generates face 
and non-face prototypes by clustering a set of training im- 
ages. The distances between an input pattern and the pro- 
totypes are classified by a Multi-Layer Perceptron. In [8] 
frontal faces are detected by a polynomial SVM classifier. 
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A system able to deal with rotations in the image plane was 
proposed by [lo]. It consists of two neural networks, one 
for estimating the orientation of the face, and another for 
detecting the derotated faces. The recognition step was im- 
proved [ 1 11 by arbitrating between independently trained 
networks of identical structure. A naive Bayesian approach 
was taken in [12]. The method determines the empirical 
probabilities of the occurrence of small rectangular inten- 
sity patterns within the face image. In [ 131 the system was 
expanded to deal with frontal and profile views of faces by 
adding a separate classifier trained on profile views. An- 
other probabilistic approach which detects small parts of 
faces is proposed in [6]. Local feature extractors are used 
to detect the eyes, the corner of the mouth, and the tip of 
the nose. The geometrical configuration of these features is 
matched with a model configuration by conditional search. 
A related method using statistical models is published in 
[9]. Local features are extracted by applying multi-scale 
and multi-orientation filters to the input image. The re- 
sponses of the filters on the training set are modeled as 
Gaussian distributions. Detecting components has also been 
applied to face recognition. In [ 181 local features are com- 
puted on the nodes of an elastic grid. Separate templates 
for the eyes, the nose, and the mouth are matched in [ 1,2). 
Finally, a component-based approach for people detection 
using SVMs was proposed in [7]. 

There are three basic ideas behind part- or component- 
based detection of objects. First, some object classes can 
be described well by a few characteristic object parts and 
their geometrical relation. Second, the patterns of some 
object parts might vary less under pose changes than the 
pattern belonging to the whole object. Third, a component- 
based approach might be more robust against partial occlu- 
sions than a global approach. The two main problems of 
a component-based approach are how to choose the set of 
discriminatory object parts and how to model their geomet- 
rical configuration. The above mentioned approaches either 
manually define a set of components and model their geo- 
metrical configuration or uniformly partition the image into 
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components and assume statistical independence between 
them. 

We propose a technique for learning relevant compo- 
nents from 3-D head models. The technique starts with a set 
of small seed regions that are gradually grown by minimiz- 
ing a bound on the expected error probability of an SVM. 
This approach has the advantage that no manual interaction 
is required for choosing and extracting components from 
the training set. Once the components have been deter- 
mined, we train a system consisting of a two-level hierar- 
chy of SVM classifiers. On the first level, component clas- 
sifiers independently detect facial components. On the sec- 
ond level, a single classifier checks if the geometrical con- 
figuration of the detected components in the image matches 
a geometrical model of a face. 

The outline of the paper is as follows: Section 2 gives a 
brief overview of SVM learning. In Section 3 we describe 
the component-based face detection system. A method for 
automatically extracting components from synthetic face 
images is presented in Section 4. Section 5 contains ex- 
perimental results and a comparison between the global and 
component-based approaches. Section 6 concludes the pa- 
per. 

2. Learning with Support Vector Machines 

In this section we outline the basic theory of SVMs [ 161. 
SVMs perform pattern recognition for two-class problems 
by determining the separating hyperplane' with maximum 
distance to the closest points of the training set. These 
points are called support vectors. If the data is not linearly 
separable in the input space, a non-linear transformation 
a(.) can be applied which maps the data points x E R" of 
the input space into a high (possibly infinite) dimensional 
space IRp which is called feature space. The data in the fea- 
ture space is then separated by the optimal hyperplane as 
described above. The mapping a(.) is implemented in the 
SVM classifier by a kernel function K(. ,  e )  which defines 
an inner product in RN, i.e. K ( x ,  t) = $(x) . @(t). The 
decision function of the SVM has the form: 

e 
f(x) = aiYiK(xa, 4, (1) 

i=l 

where .! is the number of data points in the training set, and 
yi E { -1 , l )  is the class label of the data point xi. The 
coefficients ai in Eq. (1) are the solution of a quadratic pro- 
gramming problem [ 161. 

Let M be twice the distance of the support vectors to the 
hyperplane. This quantity is called margin and is given: 

(2) 
1 

4 5 ; .  
SVM theory also includes the case of non-separable data, see [16]. 

The margin is an indicator of the separability of the data. 
In fact, the expected error probability of the SVM, EP,,,, 
satisfies the following bound [16]: 

(3) 

with D being the diameter of the smallest sphere contain- 
ing the data points in the feature space. Later in the paper 
we will attempt to minimize this quantity to automatically 
extract components. 

3. Component-based face detection 

3.1. Motivation 

We briefly mentioned in the introduction that a global 
approach is highly sensitive to changes in the pose of an ob- 
ject. Fig. 1 illustrates this problem for the simple case of lin- 
ear classification. The result of training a linear classifier on 
faces can be represented as a single face template, schemat- 
ically drawn in Fig. 1 a). Even for small rotations the tem- 
plate clearly deviates from the rotated faces as shown in 
Fig. 1 b) and c). The component-based approach tries to 
avoid this problem by independently detecting parts of the 
face. In Fig. 2 the eyes, nose, and the mouth are represented 
as single templates. For small rotations the changes in the 
components are small compared to the changes in whole 
face pattern. Slightly shifting the components is sufficient 
to achieve a reasonable match with the rotated faces. 

Figure 1. Matching with a single template. 
The schematic ternPOate of a frontal face is 
shown in a). Slight rotations of the face in the 
image plane b) and in depth c) lead to consid- 
erable discrepancies between template and 
face. 

3.2. Overview of the System 

An overview of our two-level component-based classi- 
fier is shown in Fig. 3. On the first level, component clas- 
sifiers independently detect components of the face. In the 
example shown these components are the eyes, the nose and 
the mouth. We used linear SVM classifiers, each of which 
was trained on a set of extracted facial components and on 
a set of randomly selected non-face patterns. The compo- 
nents were automatically extracted from synthetic 58 x 58 
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output Of output of Output Of 
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Figure 2. Matching with a set of component 
templates. The schematic component tem- 
plates for a frontal face are shown in a). Shift- 
ing the component templates can compen- 
sate for slight rotations of the face in the im- 
age plane b) and in depth c). 

face images generated from 3-D head models. On the sec- 
ond level the geometrical configuration classifier performs 
the final face detection by linearly combining the results 
of the component classifiers. Given a 58x58 window, the 
maximum continuous outputs of the component classifiers 
within rectangular search regions' around the expected po- 
sitions of the components are used as inputs to the geomet- 
rical configuration classifier. The search regions have been 
calculated from the mean and standard deviation of the lo- 
cations of the components in the training images. We also 
provide the geometrical classifier with the precise positions 
of the detected components relative to the upper left corner 
of the 58x58 window. Overall we have three values per 
component classifier that are propagated to the geometri- 
cal classifier. The system is computed as follows: We de- 
note the input image as x and the extracted components as 
{ x ~ } ~ T , ~ .  The decision function of a component classifier is 
then given by: 

e 
ft(Xt) = C"fKt(X$,Xt). 

i=l 

where K t  is the kernel used by the t-th classifier. The ge- 
ometrical configuration classifier F(x) is a linear combi- 
nation of the outputs of the component classifiers and the 
image locations (ht , vt ) of the detected components: 

T 
F(x) = Ct . (ft(Xt), , 

t=1 

The coefficient vectors ct are learned from the examples: 

where the label yi is 1 for faces and - 1 for non-face exam- 
ples and C is the number of examples. 

*To account for changes in the size of the components, the outputs were 
determined over multiple scales of the input image. In our tests, we set the 
range of scales to [0.75,1.2]. 

First Level. 
Component 
Classifiers 

Second Level 
Detection of 
Configurahon of 
Components 

Figure 3. System overview of the component- 
based classifier using four components. On 
the first level, windows of the size of the com- 
ponents (solid lined boxes) are shifted over 
the face image and classified by the compo- 
nent classifiers. On the second level, the 
maximum outputs of the component classi- 
fiers within predefined search regions (dotted 
lined boxes) and the positions of the compo- 
nents are fed into the geometrical configura- 
tion classifier. 

3.3. Training Data 

Extracting face patterns is usually a tedious and time- 
consuming work that has to be done manually. Taking the 
component-based approach we would have to manually ex- 
tract each single component from all images in the training 
set. This procedure would only be feasible for a small num- 
ber of components. For this reason we used textured 3-D 
head models [17] to generate the training data. By render- 
ing the 3-D head models we could automatically generate 
large numbers of faces in arbitrary poses and with arbitrary 
illumination. In addition to the 3-D information we also 
knew the 3-D correspondences for a set of reference points 
shown in Fig. 4. These correspondences allowed us to auto- 
matically extract facial components located around the ref- 
erence points. Originally we had 7 textured head models 
acquired by a 3-D scanner. Additional head models were 
generated by 3-D morphing between all pairs of the origi- 
nal head models. The heads were rotated between -30" and 
30" in depth. The faces were illuminated by ambient light 
and a single directional light pointing towards the center of 
the face, some examples are shown in Fig. 5. The position 
of the light varied between -30" and 30" in azimuth and 
between 30" and 60" in elevation. Overall, we generated 
2,457 face images of size 58x58. 
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The negative training set initially consisted of 10,209 
58x58 non-face patterns randomly extracted from 502 non- 
face images. We then applied bootstrapping to enlarge the 
training data by non-face patterns that look similar to faces. 
To do so we trained a single, linear SVM classifier and 
applied it to the previously used set of 502 non-face im- 
ages. The false positives (FPs) were added to the non-face 
training data to build the final non-face training set of size 
13,654. 

manually choosing the components it would be more sensi- 
ble to choose the components automatically based on their 
discriminative power and their robustness against pose and 
illumination changes. 

Training a large number of classifiers on components of 
random size and location is one way to approach the prob- 
lem of automatically determining components. The com- 
ponents can be ranked and selected based on the training 
results.of the classifiers, e.g. the bound on the expected 
error probability. However, this method is computational 
extensive in the training stage. 

An alternative to using a large set of arbitrary compo- 
nents is to specifically generate discriminative components. 
Following this idea, we developed a method that automati- 
cally determines rectangular components from a set of syn- 
thetic face images. The algorithm starts with a small rect- 
angular component located around a pre-selected point in 
the face (e.g. center of the left eye). Note that we could lo- 
cate the same facial point in all face images since we knew 
the point-by-point correspondences between the 3-D head 
models. The component is extracted from all synthetic face 
images to build a training set of positive examples. We also 
generate a training set of non-face patterns that have the 
same rectangular shape as the component. After training an 
SVM on the component data we estimate the performance 
of the SVM based on the estimated upper bound on the ex- 
pected probability of error. According to Eq. (3) we calcu- 
late: 

Figure 4. Reference points on the head mod- 
els which were used for 3-D morphing and 
automatic extraction of facial components. 

Figure 5. Examples of synthetic faces. 

4. Learning Components 

A main problem of the component-based approach is 
how to choose the set of discriminatory object parts. For 
the class of faces an obvious choice of components would 
be the eyes, the nose and the mouth. However, for other 
classes of objects it might be more difficult to manually de- 
fine a set of intuitively meaningful components. Instead of 

D2 p =  - 
M2 , (4) 

where D is the diameter of the smallest sphere3 in the fea- 
ture space IRp containing the support vectors, and M is the 
margin given by Eq. (2). After determining p we enlarge the 
component by expanding the rectangle by one pixel into one 
of the four directions (up, down, left, right). Again, we gen- 
erate training data, train an SVM and determine p. We do 
this for expansions into all four directions and finally keep 
the expansion which decreases p the most. This process is 
continued until the expansions into all four directions lead 
to an increase of p. In our experiments we started with 14 
seed regions of size 5 x 5 most of them located in the vicinity 
of the eyes, nose and mouth. Fig. 6 shows the results after 
component growing; the size of the components is given in 
Table 4. 

5. Experiments 

31n our experiments we replaced D2 in Eq. (4) by the dimensiond- 
ity p of the feature space. This because our data points lay within an p-  
dimensional cube of length 1, so the smallest sphere containing the data 
had radius equal to &/2. This approximation was mainly for computa- 
tional reasons as in order to compute I) we need to solve an optimization 
problem [8]. 
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Components 

Eyes 
Between eyes 
Nose 
Nostrils 
Cheeks 
Mouth 
Lip 
Comers of the mouth 

Eyebrows 
Height 

15 
17 
16 
20 
12 
20 
15 
16 
11  

Width 
19 
17 
18 
15 
22 
21 
31 
13 
18 

Table 1. Size of the learned components. 

Figure 6. The fourteen learned components. 
The crosses mark the centers of the compo- 
nents. 

In our experiments we compared the component-based 
system to a classifier trained on the whole face pattern. The 
component system consisted of 14 linear SVM classifiers 
for component detection and a single linear SVM as geo- 
metrical classifier. The whole face classifier was a single 
linear SVM trained on gray values of the whole face pattern. 
The training data for both classifiers consisted of 2,457 syn- 
thetic gray face images and 13,655 non-face gray images of 
size 58x58. 

The positive test consisted of 1,834 faces rotated be- 
tween about -30" and 30" in depth. The faces were man- 
ually extracted from the CMU PIE database [14]. The neg- 
ative test set consisted of 24,464 difficult non-face patterns 
that were collected by a fast face detector [5] from web im- 
ages4. The false positive (FP) rate was calculated relative 
to the number of non-face test images. The comparison be- 

4The test database together with a detailed description of the experi- 
ments [4] can be found on the MITKBCL web page. 

tween SVM whole face classifiers (linear and polynomial 
kernels) and a component classifier consisting of 14 linear 
SVM component classifiers and a linear SVM geometri- 
cal configuration classifier is shown in Fig. 7. For bench- 
marking we also added the ROC curve of a second-degree 
polynomial kernel SVM trained on 19 x 19 real face images. 
This face detector is described and evaluated in detail in [3] 
and performed amongst the best face detection systems on 
the CMU test set [ 101 including frontal and near-frontal face 
images. The component system outperforms all whole face 
systems. Some detection results generated by the compo- 
nent system are shown in Fig. 8. 

Figure 7. ROC curves for whole face classi- 
fiers and the 14 component classifier. 

6. Conclusion 

We presented a component-based system for face detec- 
tion using SVM classifiers. The system performs the de- 
tection by means of a two level hierarchy of classifiers. On 
the first level, the component classifiers independently de- 
tect parts of the face. On the second level, the geometrical 
configuration classifier combines the results of the compo- 
nent classifiers and performs the final detection step. Ex- 
periments on real face images show a significant improve- 
ment in the classification performance compared to a whole 
face detection system. We also proposed a region growing 
method that involves measures derived from SVM theory to 
learn relevant components from a set of 3-D head models. 
The use of 3-D head models allowed us to automatically ex- 
tract components and to arbitrarily change the illumination 
and the viewpoint. Both, the component-based classifica- 
tion system and the technique for component learning can 
be applied to other object detection tasks in computer vi- 
sion. 
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Figure 8. Faces detected by the 14 component 
system. 
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