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Abstract
In this paper we describe a technique of classifier combi-
nation used in a human identification system. The system
integrates all available features from multi-modal sources
within a Bayesian framework. The framework allows repre-
senting a class of popular classifier combination rules and
methods within a single formalism. It relies on a “per-
class” measure of confidence derived from performance of
each classifier on training data that is shown to improve
performance on a synthetic data set. The method is es-
pecially relevant in autonomous surveillance setting where
varying time scales and missing features are a common
occurrence. We show an application of this technique to
the real-world surveillance database of video and audio
recordings of people collected over several weeks in the of-
fice setting.

1 Introduction and Motivation
In problems of biometric verification and identification a
large role is played by the multi-modal aspect of the obser-
vation. A person can be identified by a number of features,
including face, height, body shape, gait, voice etc. How-
ever, the features are not equal in their overall contribution
to identifying a person. For instance, modern algorithms for
face classification (e.g. [11]) and speaker identification (e.g.
[6]) can attain high recognition rates, provided that the data
is well formed and is relatively free of variations and noise,
while other features, such as, gait (e.g. [1]) or body shape,
are only mildly discriminative.

Even though one can achieve high recognition rates
when classifying some of these features, in reality they are
observed only relatively rarely - in a surveillance video se-
quence the face image can only be used if the person is close
enough and is facing the camera, or a person’s voice when
the person is speaking. In contrast, there is a plentiful sup-
ply of the less discriminative features. This situation is il-
lustrated on an example of one of our video sequences in
figure 1.
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Figure 1: Illustration of feature availability for a long video
sequence. Presence of the feature in the corresponding input
frame is indicated by color.

A classifier derived from weakly discriminative features
is usually highly inaccurate. This inaccuracy is determined
by parameters external to the classifier, such as noisy mea-
surements, or by an intrinsic inadequacy of the chosen
method. If, for instance, we were to choose an individual’s
height as a discriminating measure, several people could
have approximately the same height, and therefore, look in-
herently alike to the height classifier. Luckily the intrinsic
inadequacy can be measured from the training data and used
to subsequently assign a confidence measure which weights
the classifier output in combination.

In pattern recognition and voice verification there has
been significant interest in using multiple classifiers in or-
der to improve the recognition rate of a given classification
system. Many comparisons have been made between alter-
native combination rules, such as sum and product rules. In
particular, [9, 7, 4, 5]. Bilmes and Kirchhoff, [2], as well
as Tax et. al., [10] point out that the product rule is optimal
when the classifiers in the ensemble are correlated, while
sum (or mean) rule is preferred if they are not. Rank order
statistics rules (e.g. min/max) are more robust to outliers
than the sum rule, but typically do not offer as much im-
provement over the error variance [5]. Voting schemes are
often more robust to non-Gaussian or multimodal distribu-
tions of the data.

In this paper we present a general framework for com-
bining classifiers in which many schemes of classifier com-
bination may be represented. We examine properties of this
framework on synthetic data and then apply it in the context
of our automated on-line human identification system.
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2 Bayesian view of classifier combi-
nation

Typically, a fully trained classifier misclassifies at least
some of the training data. These misclassifications are re-
flected in the form of a confusion matrix. The confusion
matrix expresses the likeness of the classes from the point of
view of this particular classifier, which it is trained to recog-
nize. This matrix represents an empirical value of the dis-
tribution of the intrinsic error of the classifier on the given
data set. Our approach to the classifier combination is based
on using the conditional error distribution derived from the
confusion matrix to weigh the output of each classifier be-
fore the application of a combination rule.

In more rigorous terms, a set of features x in our
setting, represents measurements available from multi-
ple independent observation channels. That is x ={
xλ=1, xλ=2, ...xλ=C

}
, where C is the number of indi-

vidual feature channels, such as an image of the person’s
face, person’s height, distribution of colors in the person’s
clothes, etc. Our goal is for a given observation set, x, to
infer a true class label, ω, which takes values from 1 to K,
the number of classes.

Since each classifier in the set uses only a disjoint subset
xλ of the features in x, we can assert that ∀λ : P (ω|x, λ) ≡
P (ω|xλ, λ). Then for a full observation, x, the output of the
classifier system, ω, can be expressed in terms of a marginal
distribution:

P (ω|x) =
C∑

i=1

P (ω, λi|x) =
C∑

i=1

P (ω|λi, x)P (λi|x) (1)

where P (λi|x) is the weight assigned to i-th classifier in the
combination. In different formulations this term represents
an “expert” or a “critic”.

Our framework for classifier combination is based on
viewing the output of an individual classifier as a random
variable, ω̃. Suppose that for each classifier λi we have ac-
cess to the joint probability of the true and predicted class
labels, P (ω, ω̃|x, λi). Then the true label can be inferred
from the individual classifier by averaging with respect to
the classifier prediction:

P (ω|λi, x) =
K∑

k=1

P (ω, ω̃k|λi, x)

=
K∑

k=1

P (ω|ω̃k, λi, x)P (ω̃k|λi, x)

(2)

where P (ω̃k|λi, x) is the prediction of the individual clas-
sifier. Substituting eqn. 2 into 1 we arrive at the following:

P (ω|x) =
C∑

i=1

K∑

k=1

P (ω|ω̃k, x, λi)P (ω̃k|x, λi)P (λi|x)

≈
C∑

i=1

[
K∑

k=1

P (ω|ω̃k, λi)P (ω̃k|x, λi)

]
P (λi|x)

(3)

The last line of this equation the conditional error distrib-
ution, P (ω|ω̃k, x, λi), which is difficult to obtain, is approx-
imated by its projection, P (ω|ω̃k, λi). The latter is simply
an empirical distribution that can be obtained from the con-
fusion matrix of the classifier on a validation subset of the
training data.

The essence of equation 3 is that the prediction of each
classifier is weighted in accordance to the error distribution
over the classes.

Practical implications of this procedure involve multiply-
ing the classifier scores with the empirical error distribution
to obtain the corrected score that takes into account the cer-
tainty of the classifier about a particular class. Note that
this combination framework should not significantly affect
the output of a classifier which is in general accurate, since
its confusion matrix will be close to identity. On the other
hand, if a classifier systematically mistakes samples of, say,
class 1 for samples of class 2, the prediction of the classifier
about class 1 will be biased towards class 2 in proportion to
the number of mistakes made on the validation set. While a
good classifier should not be affected by such an operation,
in combination with others more weight is given to class 2
and it is left to other classifiers to disambiguate this situ-
ation. It results in a ”per-class” weighting scheme, rather
than the traditional ”per-classifier” paradigm.

Additionally, each classifier is weighted by the term
P (λi|x), which can express external knowledge about the
instantaneous performance of each classifier. For instance,
if some of the features are not present, the corresponding
probabilities can be set to 0 and their outputs subsequently
ignored in making the combined decision.

This model establishes a general framework for classifier
combination, from which a variety of different combination
strategies can be derived. In particular, Tax et. al., [10],
present a framework in which sum and product rules are for-
mally justified. Our framework is fully compliant with their
work in that we implicity allow for critic-based (induced
by P (λi|x)) and error-corrected (induced by P (ω|ω̃, x, λi))
sum and product combination schemes.

3 Experiments
In section 3.1 we first explore the combination scheme on a
synthetic data set, while in section 3.2 we apply the scheme
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Figure 2: Example of the training data used for a single trial

to a real data set collected in an office environment by our
automated surveillance system.

3.1 Evaluations on Synthetic Data

In the experiments on synthetic data we measure the perfor-
mance of the combination scheme on a set of trials. A trial
consists of the following:

1. Generate training, validation and test data.
The data sets are drawn from five 2-dimensional
Gaussian densities with random means and covari-
ances. The means are drawn from normal distribu-
tion N ([0, 0]T , 3 ∗ I), while covariances are samples
drawn from the Wishart distribution W(I, 3) (unit co-
variance, 3 degrees of freedom). One such data set is
shown in fig. 2.

2. Train base classifiers
We train 2 5-class base classifiers - one with equal
weights, Ce, and the other with confidence weighting
Cc. In the interest of fairness the equal weight classi-
fier Ce is trained on both training and validation sets,
while the classifier Cc is only trained on training data.
For Cc the validation set is only used to calculate con-
fusion matrices. In the limit of infinite data the per-
formance of these classifiers should tend to optimal
Bayes.

3. Generate classifier ensembles
The two ensembles, Ee and Ec, are generated by ran-
dom perturbation of the means of the base classifiers.
We use 5 feature classifiers for each of the 2 base clas-
sifiers while not including Ce and Cc in the ensembles
themselves.

vote sumprod c_vote c_prod c_sum
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Figure 4: Performance of the Bayesian combination scheme
as compared to the traditional combination techniques. The
first three boxes correspond to voting, product and sum
rules. The next group of three corresponds to the same rules
but applied to the weighted classifier scores. Each box rep-
resents the data within 25th and 75th percentile, with the
mean marked as a horizontal line. The whiskers of the plot
relate to the variance of the accuracy of the classifiers over
the set of trials

Table 1: Summary of the results presented in figure 4. The
table shows that the weighted combination rules consis-
tently outperform the vanilla Vote, Product and Sum rules

Equal Weighted
Mean Variance Mean Variance

Vote 0.6696 0.0171 0.7621 0.0088
Product 0.6257 0.0223 0.8373 0.0065

Sum 0.6749 0.0161 0.8272 0.0069

4. Calculate error rates
Evaluation of the performance of both ensembles is
done on the testing data.

Figure 3 shows ROC curves for the three combination
rules - voting (a), product (b) and sum (c). In all cases
the classifier ensemble using the weighting scheme derived
from the approximation to the error function shows better
performance than the ensemble based on the classifier us-
ing both training and validation data sets.

In figure 4 and table 1 we report average error rates over
100 trials along with their variances. The error rates are
effectively averaged over possible choices of classifiers.

3.2 Experiments with HID data
In the second set of experiments we apply the combina-
tion technique to surveillance data recorded automatically
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Figure 3: ROC curves for a single trial showing three different classifier combination strategies with and without confidence
weighting. a) voting combination rule; b) product rule; c) sum rule. In all cases the top curve is generated by a weighted rule
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Figure 5: MMHID system for on-line multi-modal human
identification.

from our on-line multi-modal human identification system
(MMHID). The data is collected from 6 people in the of-
fice environment over the course of about 3 weeks. The
surveillance setting implies that no manual intervention is
employed to clean up the data, that is, if some features are
incorrectly detected, they are not removed from the data set.
That reflects the true circumstances under which the system
should be deployed.

The system, shown in figure 5, receives input from a sta-
tically mounted video camera and microphone. The classi-
fication proceeds on the features extracted from the camera
and microphone in real time. We stream both audio and
video channels to disk in threads with the highest priority,
while tapping into the streams to extract data for each in-
dividual classifier. We process audio and video channels
independently.

3.2.1 Audio Features

For voice classification we use the well known MFCC rep-
resentation. First, 40 MEL Frequency Coefficients (MFCs)
captured at 100Hz from overlapping sliding windows. Then
they are converted to Cepstral Coefficients (MFCCs). Only

the frames with majority of power focused into the lower
half of the Mel-scale frequency spectrum (lower 20 MFCs)
and having significant energy are tagged as voice features
to be included in later classification steps.

After obtaining sufficient amount of the audio samples
we train a Gaussian Mixture-based classifier on the col-
lected set of Mel-Scale Cepstral Coefficients. In our exper-
iments we use an 8-component mixture to model a person.

3.2.2 Video Features

The extraction of video features begins with detecting a per-
son in the view of the camera. To detect a person we apply a
set of simple rules, such as: presence of significant motion
over at least 3 frames; sufficient and stable illumination con-
ditions; and appropriate aspect ratio of the enclosing bound-
ing box. If such conditions are met, we trigger recording.

To extract the video features we first perform back-
ground subtraction and sum the resulting mask vertically.
In the resulting histogram of the non-zero values we find
the peak and expand it outwards until a sum below a cho-
sen threshold T is encountered. We use this range as an
estimate of the horizontal position and extent of the bound-
ing box. We found this estimate to be more robust, as it is
less likely to include shadows that a person might drop on
furniture and walls.

When the subject has later left the camera’s field of view,
recorded signals are automatically timestamped and entered
into an SQL database for later processing.

3.2.3 Face

For each frame in the video stream, we perform face detec-
tion [3] over a bounding box region. If a person is present,
we scan the box containing the object of interest for a face
and, if one is found, a smaller patch enclosing only the face
is extracted from the image for classification.

With a labeled dataset of faces of K people we train K
one-vs-all second order polynomial SVM classifiers using
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Figure 6: Confusion matrices calculated on the test set. a)-c) vote, product and sum rules applied to the outputs of the
classifiers directly. d)-f) same with error-weighted outputs. Element of the matrix Ci,j contains a number of times a person i
was classified as person j in the data set.

the SVMFu package [8].

3.2.4 Height

Having a calibrated camera system we determine the per-
son’s height from the bounding box in the image. Calibra-
tion gives us access to intrinsic parameters, A (focal length
and principal point), as well as extrinsic parameters R and
t, which define rotation and translation of the camera coor-
dinate system with respect to some known position in the
scene. With these, the imaging relation for the camera sys-
tem is given by the following:

m̃ = A [R|t] M (4)

where M is the 3D coordinate of the imaged point, and m̃
is the vector of homogeneous coordinates of the point in the
image plane.

To invert this projective relation we use additional con-
straints which assume that a) the person is standing on the
ground plane co-located with the (X,Y ) plane of the global
coordinate system; and b) the person’s body is vertical.

We compute the height of the person by solving a system
of linear equations for two points - at the top and at the
bottom of the bounding rectangle:

M = R−1
(
A−1m̃− t

)
(5)

subject to the ground plane constraints1.
From these estimates we estimate a single gaussian den-

sity per person, which is subsequently used for classifica-
tion.

3.2.5 Clothing

We capture individual clothing preferences by way of sep-
arate upper and lower body histograms, under the assump-
tion that, within a given day, individuals do not change their
clothing. The histogram is computed from Hue and Satura-
tion components of the image in the HSV color space. We
allocate 32 and 24 bins to the H and S components, respec-
tively. Histograms are then labeled according to subject,
and averaged by day so that for each day there are single
upper and lower average histograms for each user. Collec-
tions of histograms for a given user are finally clustered us-
ing K-means (K = 5), to give a clothing model consisting
of K prototypes.

These prototypes are later compared to test histograms
using normalized cross-correlation during classification.

3.2.6 Results

In the combination of the classifier outputs we use a simple
binary critic, P (λ|x) (see eqn. 1. For each frame of the

1We also apply the bounding box correction due to camera roll, as well
as ground plane correction due to estimation errors in the image-ground
homography parameters.
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Figure 7: Multi-class ROC curves for individual and combined classifiers. The acceptance rate is computed as a proportion
of accepted in the complete set of frames. a) Individual classifiers; b) combined classifiers. Combination rules include both
error-weighted and not weighted ones.

video sequence we assign probability 0 to classifiers which
do not observe their feature in the current frame. The rest
of the classifiers are weighted equally.

The results of running the vote, sum and product combi-
nation rules for direct and error-weighted classifier combi-
nation are shown in figures 6 and 7.

It can be seen from the figure 6 the weighted combina-
tion schemes achieved superior classification performance
as compared to direct combination rules. The figure shows
confusion matrices of the resulting classifiers. True person’s
identity is arranged along the vertical columns. The count
of classifier decisions is shown in rows. In each figure a
brighter color corresponds to a higher count. It is clearly
seen that the bottom row of matrices represents less confu-
sions about people identities in the classifiers derived from
the error-weighted scheme.

More precisely, the performance of the combination
schemes is illustrated by their ROC curves. The multi-class
version of these curves shows acceptance rate of the clas-
sifier as a function of the error rate. Thus, the value of the
curve at 100% acceptance shows the error rate of the classi-
fier on the full data set (classification regime). A verification
regime of the classifiers can be evaluated from this curve by
fixing the error rate and comparing the corresponding ac-
ceptance rates.

It is illustrated in the figure 7a) that even though the face
classifier in its full acceptance mode can achieve a very high
accuracy, it can only deliver this performance on a relatively
small fraction of the full video sequence. In contrast, height,
color and voice classifiers are relatively poor, but have ob-
servations in about 60% of the whole sequence. Combin-
ing these classifiers allows us achieve performances shown
in figure 7b). It needs to be emphasized that the resulting

classifier produces the classification decision for almost all
frames of the video sequence using whatever information is
available at the moment.

Figure 7b) shows relative performances of different com-
bination schemes. On this data set, as well on the synthetic
set from the previous section error-weighted combination
schemes consistently outperform the direct combination ap-
proaches.

4 Discussion and future work

In this paper we introduced an error correcting classifier
combination technique and applied it to two data sets - a
synthetic set and a set of multi-modal data collected from
a automated surveillance system. Experiments on synthetic
data illustrated that application of the technique resulted in
higher accuracy classifier system with smaller variance than
the well known direct techniques.

Application of this technique to the surveillance data set
allows us to improve the recognition accuracy on a sample
basis and deploy the combination in an on-line setting. In
this setting we are able to give a prediction of the person’s
identity in almost every frame of the input video sequence,
while each individual classifier can only do it for a frac-
tion of the data set. It is clear that the performance can be
much improved with temporal integration, but this is out-
side the scope of the paper. Our future work will include
using the technique presented in this paper in combination
with temporal integration as well as direct estimation of the
conditional error of eqn. 3.
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