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Abstract. Understanding the brain mechanisms underlying invariant
visual recognition has remained a central tenet of cognitive neuroscience.
Much of our current understanding of this process is based on knowledge
gained from visual areas studied individually. Previous electrophysiology
studies have emphasized the role of the ventral stream of the visual cor-
tex in shape processing and, in particular, of higher level visual areas in
encoding abstract category information. Surprisingly, relatively little is
known about the precise dynamics of visual processing along the ventral
stream of the visual cortex. Here we recorded intracranial field poten-
tials (IFPs) from multiple intermediate areas of the ventral stream of the
visual cortex in two behaving monkeys engaged in a rapid face catego-
rization task. Using multivariate pattern analysis (MVPA) techniques,
we quantified at millisecond precision the face category information con-
veyed by IFPs in areas of the ventral stream. We further investigate the
relationship between the selectivity and latency of individual electrodes
as estimated with classical univariate vs. multivariate techniques and
conclude on the similarity and differences between the two approaches.

1 Introduction

Object recognition in primates is mediated by the ventral visual pathway of the
visual cortex. This pathway runs from the primary visual cortex (V1) through
extrastriate visual areas II (V2) and IV (V4), to the inferotemporal cortex (IT)
(which can be further subdivided in a posterior (PIT) and anterior (AIT) part),
and then to the prefrontal cortex (PFC), which is involved in linking perception
to memory and action. A widely held view is that recognition is achieved through
computations that gradually increase both the selectivity and the invariance
properties of the underlying visual representation at each successive stages of
the ventral stream of the visual cortex [16].

Much of our understanding of the mechanisms underlying visual recognition
has, however, focused on these areas studied individually. Previous electrophys-
iology and imaging studies in both humans and monkeys have emphasized the
role of the ventral stream of the visual cortex in shape processing [13,21] and,
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in particular, of higher areas such as the IT cortex [12,18,17] and the PFC [4,5]
for the coding of abstract category information. Specifically, these studies have
shown that category information can be decoded in these areas within times that
are fast enough to be consistent with behavioral responses [8,10,11]. Relatively
little is known about the contribution of lower and intermediate visual areas to
the categorization process and the underlying dynamics in these areas.

Here we use a rapid visual presentation paradigm [19] to investigate the neural
basis of face processing in the ventral stream of the monkey visual cortex. We
recorded intracranial field potentials (IFPs) from intermediate areas of the ven-
tral stream of the visual cortex (areas V2, V4 and PIT) from two monkeys while
they were actively engaged in a rapid face categorization task. Using multivari-
ate pattern analysis (MVPA) techniques, we quantified at millisecond precision
the face category information conveyed by IFPs.

2 Methods

Two male rhesus macaques (M1 and M2, 14 year old) were chronically implanted
with subdural macro-electrodes and performed a face vs. non-face categorization
task using a go/no-go paradigm (12 / 16 electrodes in total for M1/ M2). Stim-
uli were presented very briefly at the center of the screen for 32 ms. A total of
80 images were organized in 4 visual subcategories (10 images each) for both
targets (macaque, chimpanzee, human and other faces) and distractors (fruits,
flowers, mugs, and car tires). The images were equalized in luminance and RMS
contrast to prevent low level biases in the recordings. All training and experi-
mentation procedures conformed to the French and European standards for the
use of experimental animals; protocols were approved by the regional ethical
committee.

Using EEGLab, data was down-sampled to 250 Hz and epoched (-50 ms
– 200 ms around the each stimuli onset). Three epoch rejection criteria were
also employed: voltage, i.e., the power for one electrode or across all electrodes
exceeded 3 standard deviations from the mean value computed over the entire
recording session. The latter criterion targeted motor artifacts. We also excluded
any trials that contained a non-varying signal (i.e., zero variance) over a 10-ms
time windows (i.e., due to amplifier saturation). The data was z-scored and
weights across electrodes are thus interpretable.

Linear SVMs were trained for the classification of targets (faces) vs. distractors
(objects) (C parameter optimized using a cross-validation procedure) for each
monkey separately. Here we considered SVM classifiers trained directly on the
average potential over each electrode computed over 10 ms-long sliding time
windows. The training and testing splits included multiple repetitions of the
stimuli collected over several days.

An initial analysis using training and test sets obtained from different record-
ing days suggested that the neural signal was largely stable over the course of
days (Figure 1). Based on these results, we pooled all recordings sessions to-
gether. Random splits were generated so that the identity of the stimuli did not
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Fig. 1. Stability of the recorded signal for both monkeys: Decoding accuracy is re-
ported for every possible training-testing set combination for different days

overlap between training and test (all repetitions of a given stimulus were thus
used for either training or testing). This limits the possibility that the classi-
fier simply “memorizes” patterns of neural activity associated with individual
stimuli and instead pick on high-level category information.

Our analysis focuses on the initial 200 ms after stimulus onset to rule out
any possible contamination from motor activity. We report the mean classifica-
tion accuracy estimated over 50 cross-validations where the data was randomly
split into two mutually exclusive halves for training and test (95% confidence
intervals were computed based on the activity during the baseline period [-50ms
20ms]. These are indicated as vertical dashed lines around the chance level of
decoding accuracy in Figures 2C and 4B). Two conditions are assumed to exhibit
a statistically significant difference if the corresponding classifiers performance
fall outside of these confidence intervals. This basic procedure was employed for
all of decoding results, although the variables (i.e., electrodes included in the
decoding) and the choice of decoding time points were manipulated for different
types of analyses. Unless otherwise noted, classifiers are trained and tested on
the same time points in the epoched and smoothed voltage data.

3 Results

The spatio-temporal nature of visual processing: The results of the neural de-
coding analysis are reported in Figure 2. Shown are the estimated latencies such
that the decoding performance deviates significantly from baseline (60 ms for M1
and 88 ms for M2; see Methods). Overlaid on Figure 2A are the event related
potentials (ERPs) for single electrodes. These ERPs, highlight both functional
similarities within and differences between the three groups of electrodes (V2, V4
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and PIT) thus confirming our initial anatomical localization. Figure 2B shows
the corresponding weights of the linear SVM classifier averaged over each ran-
dom split for every time point and expressed as a percentage of the maximum
weight. These weights highlight the contribution of each electrode at specific
time points and suggest that, at each time point, different areas and electrodes
seem to encode the relevant category information. For M1, the contribution of
electrodes over time seems to follow the known visual hierarchy (V2 → V4 →
PIT).

Could the rapid decoding of category information from distributed patterns
of neural data be predicted from univariate data analysis? Figure 2C shows a
comparison between this multivariate analysis and similar analysis conducted on
single electrodes (using the same classification procedure). The performance of
a classifier trained on multiple electrodes distributed over areas V2, V4 and PIT
exceeds the performance of the best electrode for every time point. This suggests
that most of the time (for both monkeys, but more clearly for M2), electrodes
in isolation do not provide nearly as much information as their combination.
Overall this analysis reveals a very rapid signature for high-level category within
100 ms (in agreement with human electrophysiology recordings [11,20]), which
is supported by a distributed representation over areas and electrodes and that
evolves over time as the signal progresses through the visual hierarchy.

Univariate vs. multivariate pattern analysis: Figure 3A provides a comparison
between classical univariate significance tests for each electrode, the time points
with the corresponding weights acquired from the MVPA analysis, and the cor-
responding univariate decoding performance for this electrode using the same
SVM classifier (p < 0.01 for all tests; correction for multiple comparisons is ap-
proximated by seeking consistent significance for at least ten consecutive time

Fig. 2. A) Overall classification accuracy as a function of time; B) corresponding clas-
sification weights for each electrode and time point and C) decoding accuracy for single
vs. multiple electrodes
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Fig. 3. Single versus multiple electrode analysis of informativeness measures for M2.
A) ERP comparison between targets (cyan) and distractors (yellow) with decoding
performance for the corresponding electrode (red) and weights resulting from MVPA
(black). T-tests for targets vs. distractors are shown with bars. B) MVPA decoding
performance using all vs. subsets of electrodes with significant (yellow lines) & non-
significant differential activity.

points. This is a common practice employed by other researchers [19] and it also
seems to be compatible with Bonferroni and FDR corrections. We chose this
method for a more intuitive explanation). Interestingly, both t-test and univari-
ate decoding exhibit a very similar trend. However, the electrode contributions
assessed via MVPA seems to indicate qualitative diffxerences. For instance, for
both monkeys, some electrodes (mainly in V4) seem to be associated with high
classification weights although these electrodes do not seem to exhibit any signif-
icant differential activity as measured with classical univariate analysis. Overall
this suggests that classical univariate analyses may underestimate the contri-
butions of single electrodes. Last, Figure 3B shows that removing electrodes
that exhibit significant differential activity tend to slow down the decoding of
category information.

Characterizing the nature of the neural code. We also conducted a discriminant
cross-training (DCT) analysis [1]: A classifier is trained using patterns of neural
activity at one time point to and tested on all time points in the epoch, producing
a matrix of decoding accuracy for each combination of training/testing time
points (figure 4A). Note that the diagonals of these two matrices correspond
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171 ms

145 ms

Fig. 4. A) Discriminant cross-training (DCT) analysis: Color indicates decoding accu-
racy for each combination of training and test times (vertical and horizontal axes respec-
tively). B) Decoding accuracy for a classifier trained on the time point where the overall
decodingwasmaximal (dashed line, see figure 2), and tested on the remaining time points.

to the decoding accuracy curves shown in figure 2C. This analysis allows us to
assess how suitable is the neural template picked up by the classifier over time.
As seen on figure 4A, the neural template that emerges around 100 ms post-
stimulus (X axis), and remains stable for about 100 ms, suggesting a sustained
coding of facial information in this set of areas possibly supported by feedback.
Figure 4B provides a cross-section taken from the upper graphs (on dashed white
lines). The rationale behind taking these points in time to show the duration of
the “neural template” was the assumption that category information would be
maximal at these time points in the trial and therefore they would be the best
approximations of temporally adjacent task relevant brain states.

4 Discussion

Psychophysical studies using the rapid categorization paradigm [19], have demon-
strated the remarkable speed at which the visual system can operate (with reac-
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tion times as fast as 200 ms for monkeys and 250 ms for human participants [3]).
The present study provides a quantitative description of the signal propagated
through the ventral stream of the visual cortex during the task. The present
analysis suggests latencies for the coding of face category that are shorter than
previously estimated from single electrode IT recordings [9]. The very short
latencies reported in the present study are, however, compatible with those es-
timated from human electrophysiology [11,20] and psychophysics experiments
[2,7]. These results may help shed some light on a long-standing debate on the
role played by various EEG/MEG components in face perception. However it is
important to emphasize that care should be taken in interpreting these latencies
as some of these differences may be influenced by the task difficulty and the
stimulus set used. The present decoding analysis may highlight a monkey ho-
mologue of the P100 assumed to reveal one of the first stages of face processing
[6,15] starting in the Occipital Face Area (OFA).

The present study also demonstrates the stability of the neural signal over
days of recording and the ability of a linear classifier to genralize over recording
session. Furthermore our analysis highlights some of the key benefits of MVPA as
compared to a classical ERP/univariate analysis by suggesting that intermediate
visual areas may contribute relatively early coding signals for the processing of
faces. This idea seems compatible with the high level of performance obtained
with low-level visual features for the processing of faces [14]. Overall this suggests
that intermediate visual areas such as V4 may already play a key role in visual
recognition and that the coding of category information may be implemented
via a distributed process in both space and time.
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