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Primates can recognize objects embedded in complex natural scenes in a glimpse. Rapid categorization para-
digms have been extensively used to study our core perceptual abilities when the visual system is forced to op-
erate under strong time constraints. However, the neural underpinning of rapid categorization remains to be
understood, and the incredible speed of sight has yet to be reconciled with modern ventral stream cortical the-
ories of object recognition.
Here we recordedmultichannel subdural electrocorticogram (ECoG) signals from intermediate areas (V4/PIT) of
the ventral stream of the visual cortex while monkeys were actively engaged in a rapid animal/non-animal cat-
egorization task. A traditional event-related potential (ERP) analysis revealed short visual latencies (b50–70ms)
followed by a rapidly developing visual selectivity (within ~20–30 ms) for most electrodes. A multi-variate pat-
tern analysis (MVPA) technique further confirmed that reliable animal/non-animal category information was
possible from this initial ventral stream neural activity (within ~90–100 ms). Furthermore, this early category-
selective neural activity was (a) unaffected by the presentation of a backward (pattern) mask, (b) generalized
to novel (unfamiliar) stimuli and (c) co-variedwith behavioral responses (both accuracy and reaction times). De-
spite the strong prevalence of task-related information on the neural signal, task-irrelevant visual information
could still be decoded independently of monkey behavior. Monkey behavioral responses were also found to cor-
relate significantly with human behavioral responses for the same set of stimuli.
Together, the present study establishes that rapid ventral streamneural activity induces a visually selective signal
subsequently used to drive rapid visual categorization and that this visual strategy may be shared between
human and non-human primates.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The robust and accurate categorization of natural object categories is
critical to survival, as it allows an animal to generalize many properties
of an object from its category membership (Fabre-Thorpe, 2003; Fize
et al., 2011; Rosch, 1975; Thompson and Oden, 2000; Zentall et al.,
2008). Human and non-human primates excel at visual categorization:
They can rapidly and reliably categorize objects embedded in complex
natural visual scenes in a glimpse (see Fabre-Thorpe, 2011; Potter,
2012 for recent reviews).

It is well known that object recognition is possible for complex nat-
ural scenes viewed in rapid visual presentations that do not allow suffi-
cient time for eye movements or shifts of attention (Biederman, 1972;
Potter and Levy, 1969; Thorpe et al., 1996). The underlying visual repre-
sentation remains relatively coarse as participants frequently fail to
udies in Toulouse, 21 allée de
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localize targets that are correctly detected in an image stream (Evans
and Treisman, 2005). Studies using backward-masking (Bacon-Macé
et al., 2005) and saccadic responses (Crouzet et al., 2010; Kirchner
et al., 2009) have further demonstrated that recognition is possible
under severe time constraints.While much is known about the psycho-
logical basis of rapid categorization, much less is known about the un-
derlying neural processes and, in particular, the timing of the
corresponding perceptual decisions.

Using human scalp electroencephalography (EEG), Thorpe et al.
(1996) first demonstrated that a category-selective signal can be isolat-
ed from frontal electrodes shortly after a stimulus is flashed (within
~150mspost stimulus onset). Previouswork using intra-cranial record-
ings has shown that it is possible to decode object category information
from the ventral stream of the visual cortex very rapidly (within
~100 ms post stimulus onset) in both humans (Liu et al., 2009) and
monkeys (Hung et al., 2005; Kreiman et al., 2006; Vogels, 1999a). How-
ever, this work either used a passive viewing paradigm (Hung et al.,
2005; Kreiman et al., 2006; Liu et al., 2009) or involved a relatively sim-
ple basic-level categorization task, such as trees vs. objects (Vogels,
1999a), and did not establish any link between ventral stream neural
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activity and (speeded) behavioral responses during rapid categoriza-
tion. Indeed, previous monkey electrophysiology work has found little
co-variation between reaction time and neural latencies in the
inferotemporal cortex (DiCarlo and Maunsell, 2005; Eifuku et al.,
2004; but see also Mruczek and Sheinberg, 2007).

Here, we recorded ECoG activity in monkeys actively engaged in a
rapid natural scene categorization task with the aim to characterize
the time-course of visual processing and establish a link between fast
ventral stream neural activity and rapid behavioral responses.

Material and methods

Successful learning of the categorization task

Protocol
Two male rhesus macaques (M1 and M2, both aged 14) performed

the experiment. The animals were restrained in a primate chair (Crist
Instruments, GA), sitting 30 cm away from a 1024 × 768 tactile screen.
Stimuli (Fig. 1a)were flashed centrally for 33ms covering about 7° of vi-
sual angle on a black background, with a 1.5–3 s random inter-trial time
interval between successive images.

In masked trials (presented in separate blocks), a pattern image
corresponding to visual pink noise was presented 50 ms post stimulus
onset for 33 ms (Fig. 1b). Brief presentations, in addition to masking
b

a

Fig. 1. Stimulus set and visual categorization task. a) The stimulus set consisted of natural gray
b) Following the presentation of a fixation cross, an image was flashed for 33 ms. The monkey
presentation. On half the trials, a backward mask (1/f pink noise) was displayed for an additio
on specific trials, prevented exploratory eye movements and
constrained the time available for information uptake.

The two monkeys performed a natural scene rapid categorization
task by releasing a button and touching the screen when they saw an
animal in the stimulus presented (target) or keeping their hand on
the button otherwise (distractor). A drop of fruit juice rewarded correct
responses; on incorrect trials, the stimuluswas re-displayed for 3 s, thus
delaying the next reward and motivating the animal to answer as fast
and accurately as possible. All procedures conformed to French and
European standards concerning the use of experimental animals. Proto-
cols were approved by the regional ethical committee.

Animal training
Initial training followed the procedure previously reported in Fabre-

Thorpe et al. (1998): learning was gradual, starting with 10 images and
progressively introducing new scenes everyday over a period of several
weeks until both monkeys were performing well on the familiar set of
stimuli. While the monkeys' motivation and level of reward were kept
stable by randomly interleaving familiar and new stimuli, the recurrent
introduction of new stimuli (usually 10–20%) forced the animals to
learn to generalize to novel stimuli rather than to rely on stimulusmem-
orization. Both monkeys were trained for intermittent periods on the
animal/non-animal task since 2005 (Fabre-Thorpe et al., 1998; Fize
et al., 2011; Macé et al., 2005).
-scale images with both animal targets (n = 340) and non-animal distractors (n = 340).
s indicated whether a target was present by releasing a button within 1 s following image
nal 33 ms following a 16-ms blank screen (50 ms SOA).

Image of Fig. 1
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To insure that the monkeys properly learned the concept of animal,
diverse stimuli were sampled from different animal families including
mammals (57%), birds (23%) insects (2%), reptiles and amphibians
(8%) as well as fishes and crustaceans (10%). Exemplars were chosen
to be as varied and perceptually dissimilar as possible.

Familiar stimulus set
The image set consisted of natural gray-scale photographs

(256 × 256 pixels) equalized for average luminance and global contrast
(root mean square over pixel intensities). A familiar stimulus set
consisting of 280 images (140 animal targets and 140 non-animal
distractors)was used to train the animals. An effort wasmade for target
and distractor scenes to be as varied as possible. Targets included pic-
tures of mammals, birds, insects, reptiles, or amphibians presented ei-
ther in isolation or in groups and at various positions in the images.
Distractors included pictures of various objects (trees, flowers, tools,
etc.) in natural and man-made environments (mountain, sea, city, etc.).

Behavioral data analysis
We report behavioral accuracies as d′ (d′(t) = z[Hits(t)] − z[False

Alarms(t)], where z[] is the inverse of the normal distribution function).
To testwhether the recognition accuracy of the twomonkeyswas above
chance on images from the novel set, we used a χ2 test against the null
hypothesis that the numbers of correct and incorrect responses are
equal. To compare the behavioral accuracy of the monkeys mask vs.
no-mask trials, Pearson's χ2 tests with Yates' continuity correction
were used for each monkey separately.

We conducted an analysis of the time course of accuracy (d′) against
reaction times. Hits and false alarmswere binned independently (30ms
bins) according to reaction times. We then computed d′ scores for indi-
vidual bins of these cumulative histograms. Minimal reaction times
were computed using the first 30 ms time bin followed by at least
five consecutive bins for which the number of hits significantly
outnumbered the number of false alarms (binomial test; p b 0.01) as
done previously in Liu et al. (2009). The timing of the effect of the back-
wardmask was estimated using a Pearson's χ2 test with Yates' continu-
ity correction on individual bins. All analyses were performed using the
R software (http://www.r-project.org).

Event-related potentials (ERPs) and visual receptive fields

ECoG recording and preprocessing
Monkeys were implanted with subdural macro-electrodes. Holes

(1-mm diameter) were drilled in the animal skull under anesthesia,
and electrodes were lowered manually based on initial anatomical
MRI scans. The two monkeys where implanted in both hemispheres
(9 and 13 electrodes for M1 andM2, respectively). A more precise elec-
trode locationwas then subsequently assessed bymerging X-rays (with
both the electrodes and the skull visible) and T1-weightedMRI anatom-
ical scans (see Fig. 2a and Fig. S1 for electrode locations).

The macro-electrodes used were steel wires with 150 µ of diameter
and less than 1 MΩ impedance. All electrodes were connected to a DB
plug. The entire systemwas attached to themonkey's skull using screws
and dental cement. Recordings were performed using the NeuroScan
EEG and SynAmps amplifier systems with a sampling rate of 1000 Hz
(band pass 0.1–200 Hz). Frontal electrodes were used as reference
(intra-cortical forM1,within the frontal sinus forM2).M1was recorded
head-free; M2 was head-restrained. Recording sessions spanned five
consecutive days (3–4 blocks of 640 trials daily until water satiation),
resulting in the collection of 7499 and 8757 trials for M1 and M2,
respectively.

We used the EEGLAB toolbox (Delorme andMakeig, 2004) to import
neural data in MATLAB in order to preprocess the recordings. A notch
filter was used to remove 50 Hz noise. Trials used for subsequent
analyseswere selected based on both raw potentials (b3 standard devi-
ations from themean) and global ERP power (sum of squares computed
over all electrode potentials for every time point); ~10% of the trials
were discarded based on weak visual power between 60 and 120 ms
post stimulus onset. The signal was baseline corrected [−50; 30 ms]
trial by trial and down-sampled to 512 Hz.

ERP visual latency
Following the procedure described in Yoshor et al. (2007), we com-

puted confidence intervals (99% CIs) for each electrode using the aver-
age activity computed during baseline (−50–30 ms time window; see
Fig. 2b and Fig. S2). Visual latencies for individual electrodes were
then determined by considering the first 2-ms time bin for which the
average voltage response fell outside the 99% CIs.

Coarse receptive field mapping
We used the visual mapping procedure described in Yoshor et al.

(2007) tomap out the visual receptive fields in one animal (M1).M2 ac-
cidentally lost his electrode cap before we were able to conduct the
mapping experiment. Small visual mapping stimuli (2° of visual angle
white squares) were briefly flashed at different positions (10 × 10
grid covering an area of 20° × 20° of visual angle around the fixation
cross) on screen at the beginning of the trial (during the fixation cross
interval) while the monkey was waiting for the trial to start. On each
trial, 3 to 7 mapping stimuli were presented (location sampled at ran-
dom) for 16 ms with an inter-stimulus interval of 130 ms.

After baseline correction (−50–30ms), we computed ERPs for each
electrode and each location of the mapping stimuli using 15 trials per
location. We used the maximal ERP response during the 30–130 ms
stimulus interval as a measure of visual responsiveness for the corre-
sponding stimulus location. Finally, we performed a two-dimensional
Gaussian fitting procedure on the corresponding spatial maps for each
electrode. RF width was determined by averaging the full width at half
height for each of the 2 axes from the fitted Gaussian. The receptive
fields of all but one V4 electrode could be successfully mapped using
this procedure and a criteria for goodness-of-fit described in (Yoshor
et al., 2007) (Fig. S3). The fact that we were able to isolate spatially re-
stricted receptive fields in hemifields consistent with the hemisphere
location of the corresponding electrodes (Fig. S3) suggests that the pro-
cedure was indeed successful.

Fast single-trial decoding of superordinate category

Multi-variate pattern analysis (MVPA) was performed directly on
the neural signal in two ways. A global decoding accuracy measure
was obtained by feeding a classifier with the entire 90–140 ms IFP
waveforms from all electrodes. A temporal decoding accuracy measure
was obtained by feeding each time bin of the IFP signal from all elec-
trodes. Such temporal decoding characterizes the temporal evolution
of the category signal.

For both neural decoding and the computationalmodel, a linear Sup-
port VectorMachine (SVM) classifierwas used. The classification proce-
dure ran as follows: (1) The image set was equally split into a training
set and a test set that each contained an equal proportion of target
and distractor images. (2) An optimal cost parameter Cwas determined
through line search optimization using 8-fold cross-validation on the
training set of images. (3) An SVM classifier was trained and tested on
each split.

The reported results correspond to the average performance (non-
parametric 95% confidence intervals of the mean) using a cross-
validation procedure (n = 300) whereby different training and test
sets were selected each time at random. A measure of chance level
was obtained by performing the same analysis on permuted labels.
The decodingwas considered above chancewhen 95% of the differences
betweendecoding on true or permuted labels paired over the 300 cross-
validations fell above zero. When comparing different conditions, such
as masked and unmasked trials, significant differences were assessed
using a non-parametric permutation test at each time-point (for those

http://www.r-roject.org
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Fig. 2. Sample electrode locations, event related potential and visual receptive field. a) Electrode tips (red dots) are shown on (FreeSurfer) flat maps for monkey M1 (right hemisphere).
b) The corresponding ERP for the electrodemarkedwith an arrow in panel a. Shown is the average potential evoked by animal targets (green) vs. non-animal distractors (red) for both the
mask (darker shade) vs. no-mask (lighter shade) conditions. Thin black lines indicate sample averageswith corresponding CIs (95%) obtained via bootstrapping shownwith transparency.
c) Visual receptive field for the same electrode before (left) and after (right) two-dimensional Gaussian fitting.
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time points that exhibited a significant baseline decoding). In the case of
temporal decoding, to correct for multiple comparisons, a bin was con-
sidered significantwhen followed by at leastfive consecutive significant
bins (p b 0.01), as done in Liu et al. (2009).
Backward masking: comparison between neural decoding and behavior

The protocol used here followed the description given in Protocol
section and was adapted from a human psychophysics experiment
(Serre et al., 2007). Duringmasked trials (presented in separate blocks),
a pattern image corresponding to 1/f randomnoisemaskwas presented
50ms post stimulus onset for 33 ms. The mask was generated by filter-
ing random noise through a Gaussian filter. The order of presentation of
mask and nomask blocks was alternated and counterbalanced between
days.
Fast ventral stream neural activity enables generalization to
novel exemplars

To test the ability of animals and neural decoding to generalize to
unfamiliar stimuli, novel images never seen before by the monkeys
were introduced to test their ability to generalize to new stimuli. This
set contained 400 images total sampled from a larger set used in
(Serre et al., 2007) divided equally between animal target and non-
animal distractors. This set of images was introduced to the monkeys
gradually during recording sessions on five consecutive days. Each
day, the animals were tested using 1/4 images sampled from this
novel set (80 stimuli selected each day at randomwithout replacement)
and 3/4 familiar images (240 stimuli selected at random from the famil-
iar set). This set of randomly mixed familiar and novel images was re-
peated twice in a row to form a 640-trial block. Each day, monkeys
performed 3 to 4 of those blocks until water satiation.
Robustness of the neural decoding to background clutter

The novel (unfamiliar) set of images was further subdivided into
four equal-sized image subsets corresponding to different viewing
distances of the animal (or distractor object): “head,” “close-body,”
“medium-body,” and “far-body”. A set of distractors with matching
mean distance from the camera was selected from a database of anno-
tated mean-depth images (see Serre et al., 2007 for details). Because
the size of the images is fixed, the animal viewing distance provides a
good proxy for the amount of background clutter present in these
images.
Fast single-trial decoding is predictive of behavioral responses

The animalness scores reflect how likely each individual image in
the stimulus set is to be classified as an animal irrespective of its actual
category label. Here we used this score to compare classification based
on neural, behavioral and model data (Fig. S4). An animal score was
computed from behavioral data by considering the fraction of trials for
which this specific image was classified as (animal) target by the mon-
keys. For both neural andmodel data, an animalness scorewas comput-
ed by considering the decision value of the linear (SVM) classifier used
forMVPA. The output of the classifier for a specific image corresponds to
the distance between this image and the separating hyperplane and can
be used as a direct measure of accuracy. Classifier outputs were thus
computed for each image of the test set over 50 cross-validations, and
then averaged to obtain one single animalness score per image.
Animalness scores across all stimuli for behavioral, neural and model
data were directly correlated using both Spearman correlation (report-
ed as r2) and partial correlation (r2*) measures (using MATLAB built-in
functions) to control for semantic/category effects. Such partial correla-
tionmeasures reflect the intrinsic correlation between, for example, the
neural and model data, due to visual information beyond predicted

Image of Fig. 2
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Fig. 3.Decoding from ventral stream neural activity and backwardmask effect. a) Readout
accuracy formonkeyM1 (gray) andM2 (red) during themask (lighter shade) vs. no-mask
conditions (darker shade). Center lines correspond to the average decoding accuracy esti-
mated across multiple cross-validations of the data. Corresponding CIs (95%) obtained via
bootstrapping are shown with transparency (most confidence intervals are actually too
small to be visible). Horizontal lines indicate decoding latencies for the mask and no-
mask conditions (upper colored bars) as well as the earliest significant effect associated
with the presentation of the mask on decoding accuracy (lower black bar on each plot).
Horizontal dotted lines indicate the upper limit of the 95% CI around chance level obtained
with a permutation procedure. b) Cumulative d′ curves plotted as a function of response
times for mask (thin) vs. no-mask conditions (thick). Black dotted vertical line indicates
minimum reaction times for mask (thin) vs. no-mask conditions (thick). Gray vertical
line indicates earliest mask effect.
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category labels. Using this correlation measure, it is thus possible for
two visual systems to exhibit a similar level of accuracy and be
uncorrelated.

Fine visual information can be decoded independently of monkey behavior

We considered four (basic) categories of images from a subset of the
target stimuli presented (people, macaques, chimpanzees, otter faces).
Each subset contained 10 images for a total of 40 images. We trained
and tested a classifier to discriminate between these four subcategories
of animal images using a one-versus-all decoding procedure.

Results

Successful learning of the categorization task

Twomonkeys (M1 andM2)were trained to perform a rapid catego-
rization task in which they had to report the presence or absence of an
animal in briefly presented natural scenes (see Material and methods;
Fig. 1). Despite the large variability of the natural stimuli used, both
monkeys were able to learn to categorize images with a high degree
of accuracy (measured as d′;M1: 3.15;M2: 2.96) and very shortmedian
reaction times (RTs; M1: 305 ms; M2: 289 ms).

Event-related potentials (ERPs) and visual receptive fields

While the two animals were engaged in the rapid categorization
task, we recorded subdural electrocorticogram (ECoG) signals from
multiple electrodes implanted over intermediate areas (V4/PIT) of the
visual cortex (Figs. 2 and S1).We estimated the visual latency of individ-
ual electrodes using the method described in Yoshor et al. (2007). Most
electrodes exhibited short visual latencies ranging between ~40–70ms
post stimulus onset for M1 (median: 53 ms) and from ~35–80 ms for
M2 (median: 59ms, with a trend for V4 electrodes to exhibit shorter la-
tencies than PIT electrodes) (Fig. S2).

To verify that the recorded neural responses were visual in nature,
wemapped out receptive fields (RFs) coarsely in one of the two animals
(M1) by flashing small white squares during the fixation-cross (pre-
trial) intervals (see Material and methods). RF sizes ranged between
3.4°–8.9° with an average of 7.0° and were of similar size for V4 and
PIT electrodes (Fig. S3, see Fig. 2c for an example electrode).

We further estimated the earliest significant differential activity for
animal vs. non-animal stimuli for each individual electrode using a
point-by-point analysis as done in Liu et al. (2009) and Thorpe et al.
(1996): Latency here is defined as the first time point where five con-
secutive points (10 ms bins) yields significance (p b 0.01) in a t-test.
For one of the two monkeys (M1), all electrodes exhibited a significant
differential activity for animal vs. non-animal under 200 ms. For the
other monkey (M2), only about half of the electrodes (8 out of 13) ex-
hibited significance. The earliest significant animal/non-animal differ-
ential activity found using this method occurred at 83 ms in M1 on
one V4 electrode and at 89 ms in M2 for a PIT electrode (Fig. S2).

Fast single-trial decoding of superordinate category

The analysis above required to average each individual electrode
neural signal across multiple trials. In some cases, such averaging may
lead to data distortions that can be avoided using multi-variate pattern
analysis (MVPA) combined with modern statistical methods (Meyers
and Kreiman, 2012; Rousselet and Pernet, 2012). MVPA typically pro-
vides higher statistical power over uni-variate methods by pooling in-
formation across all electrodes, enabling reliable estimates of latencies
from single trials (Cauchoix et al., 2012).

Here, we trained and tested a linear Support Vector Machine (SVM)
classifier directly on pooled electrode potentials for every time point in-
dependently (Chang and Lin, 2011). A similar analysis was previously
used in combination with human MEG (Cichy et al., 2014; Isik et al.,
2014), EEG (Cauchoix et al., 2014) and ECoG (Liu et al., 2009) data as
well as monkey electrophysiology data (Hung et al., 2005) and provides
a compact unbiased summary of the entire time-course of visual process-
ing (Fig. 3a). Reliable decoding of superordinate category information
(animal vs. non animal) was possible from single trials under 100 ms
post stimulus onset (M1: 92 ms, M2: 96 ms). Furthermore, electrodes
from both V4 and PIT contributed to the decoding accuracy (Fig. 4).

Next, we tested the robustness of this early category-selective neural
to the presentation of a backward (pattern)mask as used in several pre-
vious rapid categorization psychophysics experiments (Bacon-Macé
et al., 2005; Serre et al., 2007; VanRullen and Koch, 2003).

Image of Fig. 3


Fig. 4. Decoding comparison between V4 and PIT. Readout accuracy for V4 (red) vs. PIT
(orange) and comparison with readout from all electrodes (blue) for monkey M1
(upper graph) and M2 (lower graph). Center curves correspond to the average decoding
accuracy estimated over multiple cross-validations of the data. Corresponding CIs (95%)
obtained via bootstrapping are shown with transparency (most confidence intervals are
actually too small to be visible). Significant deviation from chance level is shown at the
top of the graph with horizontal bars along with the corresponding earliest latency. Hori-
zontal dotted curves indicate upper limit of the 95% CI around chance level obtainedwith a
permutation procedure. This analysis was based on 9 electrodes for M1 (6 in V4 and 3 in
PIT), and 13 for M2 (10 in V4 and 3 in PIT). The classification was nonetheless based on
the same number of electrodes (n= 3) for V4 and PIT by using only 3 random electrodes
from V4 (different samples used for different cross-validations of the data).
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Backward masking: comparison between neural decoding and behavior

On half of the trials, a backwardmask (1/f pink noise)was presented
following stimulus presentation with a stimulus onset asynchrony
(SOA) of 50 ms. This type of mask puts very severe time constraints
on the visual system: It is assumed to interrupt visual processing by
disrupting visual persistence and hindering recurrent signals (Keysers
et al., 2001; Lamme and Roelfsema, 2000), thus encouraging fast, i.e.
mostly feedforward, behavioral responses (VanRullen and Koch,
2003). Consistent with this hypothesis, previous human psychophysics
studies have established that backward masking with an SOA ~50 ms
(as used here) or longer has very little effect on the fastest human be-
havioral responses (VanRullen and Koch, 2003) and early scalp
electro-encephalography (target vs. distractor) differential activity
(Bacon-Macé et al., 2005).

Here, the overall behavioral accuracy (d′) of the two animals (com-
puted on both familiar and novel images) was significantly reduced on
masked trials (M1: 2.12 vs. 2.83 for mask vs. no-mask presentations,
χ2(1)= 99, p b 0.001; M2: 2.14 vs. 2.55 for mask vs. no-mask presenta-
tions, χ2(1) = 40, p b 0.001) but far exceeded chance level (M1:
χ2(1) = 2059, p b 0.001; M2: χ2(1) = 2326, p b 0.001).

Cumulative d′ curves plotted as a function of response times are
shown in Fig. 3b. The cumulative number of hit and false alarm re-
sponses was used to calculate an accuracy measure at each time point
t. Such analyzes of the time course of reaction times aim to provide a be-
havioral characterization of the underlying processing dynamics. The
shortest RT was unaffected by the presentation of the mask (min
RT=197/200mswith/withoutmask). A significant difference between
masked and unmasked trials only appeared for trials with slower re-
sponses (with a delay roughly equal to the SOA ~50 ms; Fig. 3b).

An ECoG decoding analysis performed separately on trials with/
without masking revealed very similar estimates of decoding latencies
(M1: 94ms,M2: 96ms). Interestingly, thefirst significant difference be-
tween the two conditions was found during a later time window
(starting at 128 ms post stimulus onset for M1 and 130 ms for M2;
Fig. 3a). The corresponding ~30 ms initial neural processing time win-
dow left unaffected by the presentation of the mask matches well
with the ~50 ms initial response time window estimated from behav-
ioral responses above.

Next, we assessed how behavioral and neural responses generalize
to novel (unfamiliar) stimuli, a hallmark of high-level abstract category
formation beyond rote learning.

Fast ventral stream neural activity enables generalization to
novel exemplars

We then evaluated behavioral responses and neural decoding accu-
racy separately for a novel and familiar set of images. On the very first
presentation of the novel stimuli (80 images × 5 days), the accuracy of
the monkeys (d′) remained well above chance (M1: 1.62, χ2(1) = 96,
p b 0.001; M2: 1.99, χ2(1) = 123, p b 0.001). Similarly, global decoding
from early ventral stream neural activity (90–140 ms time window
post-stimulus onset) generalized well above chance from the familiar
(M1: 0.68, p b 0.01; M2: 0.79, p b 0.01) to the novel set (M1: 0.34,
p b 0.05; M2: 0.48, p b 0.05).

These results suggest that the two monkeys did form a high-level
concept of the animal category beyond rote learning. This is all the
more remarkable as the stimulus dataset used includes multiple animal
species (mammals, reptiles, fishes, birds, etc.) and multiple factors that
can affect the appearance of the target object category such as changes
in position, scale, view-point or the type of background scenery.

A major challenge associated with the categorization of natural
scenes is the presence of significant clutter. Previous psychophysics
work has shown that the accuracy of human participants rapidly de-
grade in the presence of increasing clutter (Serre et al., 2007). We
thus assessed next the robustness of the neural decoding to the pres-
ence of background clutter.

Robustness of the neural decoding to background clutter

The accuracy of neural decodingwas further broken down according
to different clutter conditions (Fig. 5). The accuracy of neural decoding
appeared quite stable across clutter conditions and remained well
above chance except for the most cluttered condition (where the ani-
mals tend to occupy a much smaller portion of space than background
clutter).

Next, we linked early ventral stream neural activity to behavioral
responses.

Fast single-trial decoding is predictive of behavioral responses

We computed an “animalness” accuracy score for individual images
based on either monkeys' behavioral responses or neural decoding
(Fig. S4). Such a score provides a compact characterization of the visual
strategy employed by a visual system and permits the comparison be-
tween neural and behavioral data via direct correlation. The correlation
between animalness scores computed from neural decoding
(90–140 ms time window) and behavioral responses was significant
(M1: r2 = 0.45, p b 0.001; M2: r2 = 0.27, p b 0.001), even after
correcting for classification accuracy using partial correlation (see

Image of Fig. 4


Fig. 5. Category information and clutter condition. Neural decoding (90–140 ms time
window; 95% CI shown as error bars) for monkey M1 (blue) and M2 (red) shown for
each sub-categories of clutter conditions (H: head; B: Body; M: Medium far and F: far).
For more details on the stimuli see Serre et al. (2007). The horizontal dashed lines repre-
sent chance level for each monkey.
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Methods;M1: r2*=0.29, p b 0.001;M2: r2*=0.15, p b 0.001). For com-
parison, we computed a similar score for both a representative
feedforward computational model of the ventral stream of the visual
cortex (HMAX) previously shown to match human performance on
the same rapid animal categorization task (Serre et al., 2007) and for a
low-level visual representation based on pixel intensities (see Supple-
mentary Information).

To test for a more direct link between this early neural activity and
behavioral response times, a hallmark of decision making processes
(Johnson and Olshausen, 2003; Schall, 2002), we organized trials into
a b

Fig. 6. Linking rapid ventral stream neural activity with response times. a) Trial binning accor
shown as circles (90–140 ms time window; 95% CI shown as error bars) for monkey M1 (gray
level obtained with a permutation procedure. b) Decoding conducted on individual quartiles.
validations of the data. Corresponding CIs (95%) obtained via bootstrapping are shown with tr
viation from chance level is shown at the top of the graphwith horizontal bars alongwith the c
around chance level obtained with a permutation procedure.
quartiles based on the overall distribution of reaction times (Fig. 6a).
Global decoding (90–140 ms post-stimulus onset time window) re-
vealed a monotonic (near-linear) relationship between decoding accu-
racy and mean reaction times for each quartile: Trials corresponding to
faster quartiles were decoded with higher accuracy (M1: F(3,1196) =
1477, p b 0.001; M2: F(3,1196) = 820, p b 0.001). Temporal decoding
conducted on individual quartiles separately (Fig. 6b) further suggested
that decoding latencies followed response times very closely. Trials as-
sociatedwith faster quartileswere decoded faster andwith higher accu-
racy. These results demonstrate that fast neural activity in the ventral
stream is linked to both behavioral accuracy and reaction time.

To further quantify the visual information encoded in this neural ac-
tivity beyond task-related category information, we next assessed
whether task-irrelevant visual information could still be decoded inde-
pendently of monkey behavior.

Fine visual information can be decoded independently of monkey behavior

Here, we considered four (basic) categories of images from a subset
of the target stimuli presented (people, macaques, chimpanzees, otter
faces; Fig. 7). Reliable decoding of these subcategories above chance
level suggests that task-related information does not completely over-
ride visual information. These results further suggest that, in principle,
fast ventral stream neural activity could subservemultiple visual recog-
nition tasks, consistent with earlier predictions from computational
models (Joyce and Cottrell, 2004; Riesenhuber and Poggio, 1999).

Next, we evaluated the robustness of the neural decoding to the
presence of background clutter.

Human and non-human primates share a similar visual strategy

Here, we compare the accuracy (d′) of the two monkeys to that of
human participants (Serre et al., 2007) using a very similar paradigm
with the same novel set of stimuli. Despite the presence of the mask,
monkeys reached an accuracy level (M1: 1.35; M2: 1.92) comparable
to that of human participants (n = 22; H: mean 1.96, SD = 0.50) for
the same novel set of images.
ding to reaction times and corresponding neural decoding (overlaid on the distributions)
) and M2 (red). Horizontal dotted lines indicate upper limit of the 95% CI around chance
Center lines correspond to the average decoding accuracy estimated over multiple cross-
ansparency (most confidence intervals are actually too small to be visible). Significant de-
orresponding earliest latencies. Horizontal dotted curves indicate upper limit of the 95% CI

Image of Fig. 5
Image of Fig. 6


a

b

Fig. 7. Decoding of fine-level visual information. a) Sample stimuli used for the analysis.
b) Accuracy for decoding animal sub-categories (human, chimpanzee, macaque and
otter) for target images. Decoding accuracy (90–140 ms time window) based on a one-
versus-all classification procedure forM1 (gray) andM2 (red). Bar plots indicate the aver-
age decoding for bothmonkeys. Horizontal dotted lines indicate the upper limit of the 95%
CI around chance level obtained with a permutation procedure.
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To further assess the similarity of the visual strategies used by mon-
keys and human participants, we computed animalness scores from be-
havioral responses for both monkeys and human participants (Fig. 8).
For human observers, this score was computed as the fraction of
human observers that classified a specific image as an animal irrespec-
tive of the actual category label. A score of 1.0/0.0 means that all partic-
ipants classified the image as animal/non-animal. Any value in between
reflects some variability across subjects. We computed a similar index
for monkeys by pooling responses between the two animals and over
multiple trials to obtain a reliable estimate.

We found a significant correlation between human observers
and monkeys (Spearman correlation: r2 = 0.73, p b 0.001) even after
factoring out accuracy using a partial correlation measure (r2* = 0.33,
p b 0.001). This interspecies correlation was as strong as the correlation
between the two monkeys (r2 = 0.67, p b 0.001; partial correlation:
r2* = 0.32, p b 0.001). Overall this suggests that monkey and human
participants do indeed follow a very similar visual strategy in our task.
Discussion

The present study investigated the neural underpinning of rapid nat-
ural scene categorization in non-human primates. Despite the inherent
complexity of natural scenes, we found that superordinate object catego-
ry can be read out very rapidly (within ~ 100ms post stimuli onset) from
intermediate areas (V4/PIT) of the ventral stream of the visual cortex.

One limitation of ECoG recordings is the lack of a precise spatial local-
ization of the underlying neural source. We remain confident, however,
that the recorded neural signalswere not contaminated bymotor prepa-
ratory responses because our analysis timewindowdid not overlapwith
behavioral responses. Furthermore, in addition to task-relevant category
signals, we were also able to decode task-irrelevant visual information
and to map out RFs for individual electrodes.

Using backward masking, we found a striking degree of similarity
between ventral stream neural activity and behavioral responses: both
remained unaffected during an initial visual processing stage with the
mask only impacting later processing. These results are consistent
with earlier electrophysiological masking studies (Keysers et al., 2001;
Kovacs et al., 1995; Rolls and Tovee, 1994) and masking theories
(Breitmeyer, 2007; Breitmeyer and Ogmen, 2006) positing that visual
processing of the stimulus and mask are kept separate during an initial
short time period. These results are also consistent with theories postu-
lating two distinct modes of visual processing, i.e., an early (possibly
feedforward) processing unaltered by the presentation of a backward
mask, which only interferes with later (feedback) processing (Lamme
and Roelfsema, 2000; Schmidt and Schmidt, 2009; VanRullen and
Koch, 2003). At the same time, given our relatively short estimate of
the timing of themask effect (~130ms) compared to estimates of V4 at-
tentional modulation reported in the literature (~160–170 ms, see
(Buffalo et al., 2010; Poort et al., 2012)), the presentation of the mask
in our study is likely to already interfere with feedforward processing.
In addition, the observed mask timing does not exclude a possible fast
recurrent modulation during the initial processing time window
(Buffalo et al., 2010; Hupe et al., 2001). A more direct test for teasing
apart alternative theories of visual masking would, however, require
to vary the SOA more systematically to demonstrate co-variations be-
tween SOA, neural decoding and behavior, or the use of an inactivation
protocol as done in Hupe et al. (1998).

Most previous attempts to link visual processes to behavior have fo-
cused on the processing of motion information in the dorsal stream of
the visual cortex (Gold and Shadlen, 2007). A previous study based on
single unit activity in IT did not find any co-variation between neural la-
tencies in IT and reaction time (DiCarlo and Maunsell, 2005). The pres-
ent study using ECoG electrodes, however, was able to identify co-
variations between ventral stream neural activity and both perceptual
decisions and their timing. This is consistent with a more recent
single-cell study which demonstrated a correspondence between neu-
ral activity in IT and the speed of recognition (Mruczek and Sheinberg,
2007) using isolated objects in a visual search display. Furthermore,
our estimate of the latency of category information agreed well with
previous estimates on the optimal timing for IT micro-stimulations to
affect perceptual decisions (Afraz et al., 2006).

Our analysis further suggests that relatively modest shifts in the la-
tency of task-related information encoded in the ventral stream
(4–18 ms) yields larger shifts in the corresponding distribution of be-
havioral responses (10–60 ms). One possible interpretation based on
computational models of decision making such as the Drift Diffusion
Model (DDM; (Ratcliff and McKoon, 2008)) is that ventral stream neu-
ral activity reflects the rate of accumulation of information, known as
the drift rate, which is determined by the quality of the information ex-
tracted from the visual stimulus. The role of the ventral stream would
thus be to convey the amount of evidence in the stimulus toward the
target or the distractor decision category (Ratcliff and McKoon, 2008).

The impressive speed of visual processing observed during rapid cat-
egorization tasks has led some researchers to argue for subcortical

Image of Fig. 7


Fig. 8. Comparison between the visual strategy used by humans vs. monkeys. An animalness index was computed for individual images (120 animals and 120 non-animals) based on the
fraction of trials that was classified as animal target (irrespective of the actual true label) by either human observers (x-axis; n= 22) ormonkeys (y-axis; n= 2): the higher the score the
more likely the image is to be classified as containing an animal. Thumbnails with green/red outlines correspond to animal/and non-animal stimuli.
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routes bypassing altogether the visual cortex, e.g., via the thalamus
through the amygdala (LeDoux, 1996). Direct projections between
these two structures were observed on rodent electrophysiology during
fear conditioning, but evidence for this “low-road” subcortical pathway
for rapid vision is a matter of debate (see Cauchoix and Crouzet, 2013
for a recent review). The existence of animal category selective re-
sponses has been demonstrated in the human amygdala (Mormann
et al., 2011). The observed latencies are relatively late (N300 ms)
compared to those found in the present study (b100 ms). Interestingly
a recent monkey electrophysiology study has shown selectivity for
threatening stimuli (snakes) in the pulvinar within ~50 ms post-
stimulus onset (Van Le et al., 2013). The present study supports more
directly the “high-road” (cortical) hypothesis. At the same time, the ex-
istence of direct projections between the pulvinar and intermediate
areas of the ventral stream of the visual cortex leaves, however, open
the possibility that the visual selectivity for animal vs. non-animal
found in the present study originates in subcortical areas with the ven-
tral stream simply relaying the information to downstream areas
(Pessoa and Adolphs, 2011).

Evidence suggesting that monkeys are capable of learning a high-
level visual concept of abstract natural categories has so far been limited
to behavioral studies (Fabre-Thorpe et al., 1998; Fize et al., 2011; Sigala,
2009). Previous monkey electrophysiology studies on categorization
(e.g., cats vs. dogs (Freedmanet al., 2001) or faces vs. non-faces andfish-
es vs. non-fishes (Sigala and Logothetis, 2002)) did not test for general-
ization to novel (unfamiliar) stimuli and are thus compatible with rote
learning of individual exemplars (Vogels, 1999a, 1999b; Sigala et al.,
2002). The present study establishes that ventral stream neural activity,
in principle, could be supporting primates' generalization ability during
high-level processing of natural scenes. In addition,we also found that it
was possible to decode finer level (basic) category information, which
was unrelated to the task (from target stimuli only). This suggests
that, while salient, task-related category information does not
completely override the visual information contained in these relatively
early visual processes.

One of the main challenges associated with rapid natural scene cat-
egorization is clutter. Previous monkey electrophysiology studies (De
Baene et al., 2007; Reynolds and Chelazzi, 2004; Rolls and Tovee,
1995; Sato, 1989; Sheinberg and Logothetis, 2001; Zhang et al., 2011;
Zoccolan et al., 2005) have shown that ventral stream neural selectivity
degrades when multiple objects are presented simultaneously. At the
same time, the range of clutter tolerance found within and across

Image of Fig. 8
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studies is quite broad (Zoccolan et al., 2007) and, ECoG decoding from
human inferotemporal cortex is robust when two objects are presented
simultaneously (Agam et al., 2010; Reddy and Kanwisher, 2007). Our
study further suggests that, consistentwith behavior, category decoding
from ventral stream neural activity is at least partially robust to natural
background clutter.

In addition, the present study found a high degree of correlation be-
tween neural and behavioral data as well as with a computational
model of the ventral stream of the visual cortex. While we controlled
for the most obvious low-level visual differences between the target
and distractor set (e.g., distance to the camera, pixel intensities), we
cannot rule out the possibility that relatively low-level features (includ-
ing spatial frequencies) may be driving these correlations.

We further demonstrated that monkey and human participants ex-
hibit similar patterns of correct and incorrect responses on the same
set of images suggesting that they engage similar visual representations.
These behavioral results adds to a growing body of evidence (Fize et al.,
2011) suggesting that the neural mechanisms supporting rapid object
categorization may be conserved between humans and macaque
monkeys.

In sum, the present study suggests that rapid ventral stream neural
activity induces a selective task-relevant signal subsequently used to
drive visual categorization.
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