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Abstract—Traditionally, the modeling of sensory neurons has
focused on the characterization and/or the learning of input-
output relations. Motivated by the view that different neurons
impose different partitions on the stimulus space, we propose
instead to learn the structure of the stimulus space, as imposed
by the cell, by learning a cell specific distance function or kernel.
Metaphorically speaking, this direction attempts to bypass the
syntactic question of “how the cell speaks”, by focusing instead
on the semantic and fundamental question of ”what the cell says”.

Here we consider neural data from both the inferotemporal
cortex (ITC) and the prefrontal cortex (PFC) of macaque
monkeys. We learn a cell-specific distance function over the
stimulus space as induced by the cell response; the goal is to
learn a function such that the distance between stimuli is large
when the responses they evoke are very different, and small when
the responses they evoke are similar.

Our main result shows that after training, when given new
stimuli, our ability to predict their similarity to previously seen
stimuli is significantly improved. We attempt to exploit this ability
to predict the response of the cell to a novel stimuli using KNN
over the learnt distances. Furthermore, using our learned kernel
we obtain a partitioning of the stimulus space which is more
similar to the partition induced by the cell responses as reveled
by low dimension embedding, and thus, are able in some of the
cases to peek at the semantic partition induced by the cell.

I. INTRODUCTION

A. Functional characterization of single cells

Transformations of representations are an immanent part of
our cognitive processes. Objects and sensations (with distinct
physical properties) are analyzed, synthesized and transformed
through the brain’s different pathways, taking detailed forms
of membrane potentials and action potentials that eventually
compose a larger mental representation1. The question of what
exactly is being represented in different brain regions has
attracted great interest and some remarkable work, but while
the picture is fairly clear in some domains, most remain only
partially understood.

A case of special interest is the characterization of sensory
neurons: one of its main goals is to characterize dimensions
in stimulus space to which the neurons are highly sensitive
(causing large gradients in the neural responses), or alterna-
tively dimensions in stimulus space to which the neuronal

1The dual representation terminology is in itself deeply embedded in the
brain research discourse, see for example[1], [2]

response is invariant (defining iso-response manifolds). This
challenge is especially pronounced when trying to learn the
representation of visual objects in higher brain areas, where
simple features representations (and models) are neglected in
favor of complex, non-trivial and possibly semantic ones.

Visual processing in the cortex is classically considered
to be hierarchical, with simple feature representations being
gradually neglected in favor of distributed complex object
representations at the level of the inferotemporal cortex (ITC)
[3], [4]. Consistent with this idea, a recent study [5] showed
that it was possible to reliably extract position and scale
invariant object category information from a small population
of neurons ( ∼ 200) in IT cortex. A second study pointed out
a possible functional shift that might be taking place between
the closely connected ITC and prefrontal cortex (PFC) regions
[6], [7]. Others [8] point out the manifestation of non-linear
representation already in the V4 regions and offered a model
that may account for it. Understanding the actual manifestation
of this shift and characterizing the role of single cells in such
schemes as well as gathering information to support such
models of representation has proved to be a major challenge.
In this work we focus our efforts on the task of single cell
characterization.

The dominant approach to the functional characterization
of sensory neurons attempts to learn the input-output relations
f : S → R of a cortical neuron, and to predict the response
of the neuron to novel stimuli. Prediction is often estimated
from a set of known responses of a given neuron to a set
of stimuli, by modeling some linear filter over the stimuli.
One typical method of building such predictors uses linear
models and their second order variants, in order to approximate
the function that is assumed to generate the response [9],
[10]. However, these models may fail when responses are
highly non-linear or when the smoothness of the response
as dependent on the stimulus space is lost [11] - a process
which is hypothesized to occur as one moves along the Visual
pathways from V4 to the ITC and further to the PFC [7].

The approach taken in this work avoids learning the input-
output relation f . Instead, we attempt to learn the specific
”geometric” structure induced by a neuron on the visual
stimuli. In other words, we try to learn the non-linear partition
of stimulus space as induced by the neuronal responses.
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B. Learning a single cell’s invariant space

Motivated by the view that different neurons impose dif-
ferent partitions of stimulus space which are not necessarily
simply related to the simple feature structure of the stimuli
[12], we attempt instead to learn the structure of the stim-
ulus space by learning a distance function. Specifically, we
characterize a neuron by learning a pairwise distance function
over the stimulus space that is consistent with the similarities
between the responses to different stimuli. A distance function
is a function defined over pairs of data-points D : S×S → R,
which assigns a real (and possibly bounded) valued number
to any pair of points from the input space {si, sj} ∈ S.
The assigned number measures the distance between pairs of
points, which reflects the similarities between them.

Intuitively, a good distance function would capture the
desired structure and assign small distance values to pairs of
stimuli that elicit a similar neuronal response, and large values
to pairs of stimuli that elicit different neuronal responses.
Knowledge of the structure is in itself valuable. as it can be
used to understand the kind of classification that a single cell
performs on the stimulus space. Interestingly, it could also be
used for prediction, using some variant of K Nearest Neighbors
(KNN) with the learnt distance function.

Our approach offers several advantages: first, it allows us
to aggregate information from a number of neurons and reach
a good hypothesis even when the number of known stimuli
responses per neuron is small, which is a typical concern
in the domain of neuronal characterization. Second, unlike
most functional characterizations that are limited to linear or
weakly non-linear models, distance learning can approximate
functions that are highly non-linear.

Metaphorically speaking, learning a cell specific distance
function allows the investigator to bypass the question of
”how the cell speaks”, or “how many spikes are fired to a
given stimuli?”. Instead, we attempt to touch upon the more
fundamental question of what exactly the cell is saying, or
“what partition does the cell induce on stimulus space?”.

II. RELATED WORK

A. Neurophysiological background

The common view of sensory systems considers neurons
as feature detectors arranged in an anatomical and functional
hierarchy. Visual processing in cortex is classically modeled as
a hierarchy of increasingly sophisticated representations, natu-
rally extending the model of simple to complex cells of Hubel
and Wiesel. In this view of the visual system, information from
simple feature detectors in the retina converges at the level of
the primary visual cortex (V1) to represent elaborate features
of direction and orientation. This hierarchical view continues
to dominate models characterizing both the ventral pathway,
associated with object recognition and form representation,
and the dorsal pathway associated with determining objects’
position in space.

Several models have been proposed to account for the
impressive human ability to locate, identify, recognize and
track objects in a visual scenery e.g. [13], [14], [15]. Little
quantitative modeling has been done to explore the biological

feasibility of this class of models to explain aspects of higher-
level visual processing such as object recognition. The role
of a single cell in such models is, in particular, a subject
of great debate and while researchers have acknowledged the
need to account for properties of invariance and specificity, the
prediction requirement of a single cell model is still phrased
in terms of response predictions.

In addition, physiological evidence accumulated over the
past decade remains controversial, particularly because models
of object recognition in the cortex have been mostly applied
to tasks involving the recognition of isolated objects presented
on blank backgrounds. Ultimately models of the visual system
have to prove themselves in real world object recognition
tasks, such as face detection in cluttered scenes, a standard
computer vision benchmark task. Understanding the role of
a single cell in in such complex task places a very difficult
challenge on the experimental setting: that of revealing the
invariant response space of the cell.

The accepted approach to functional single cell characteri-
zation has focused on characterizing the Spatio-Temporal Re-
ceptive Fields (STRFs) of a neuron: a function that maps time-
varying visual inputs to neural responses [9], [11]. Classically,
STRFs have been used to implement linear and sometimes
second-order models of neural responses [10]; ultimately,
evaluating the success of such a model by measuring the
model’s response prediction against the real responses. This
approach has frequently been used to study the visual system
and has been proven quite efficient for early stages of the
visual system; however, using these models to characterize
neurons in higher stages of the visual system has not been
proven as efficient.

These and other findings seem to suggest that highly com-
plex representations of the environment cannot be accounted
for by the mere use of simple linear models, nor can its success
be measured purely by its ability to predict neuronal response,
and that a new approach to the functional characterization of
these cells may be in order. A first step in this direction was
taken by [16], introducing the learning of distance functions
into this domain and showing some preliminary and promising
results. Here we pursue this research direction further, trying
to identify and characterize complex cells in the visual system.
Our results may help to make this approach an accepted one
in experimental neuroscience.

B. Distance function learning

While distance function learning is a somewhat new area
of research, the concept of a distance function is well known
and is widely used in various applications and for various
computational tasks. Recent years have seen a lot of interest
in distance function learning algorithms (e.g. [17], [18], [19])
These algorithms aim at automatically incorporating domain
specific knowledge and/or side information into the applied
distance function. In the general setting of such an algorithm,
side information (typically in the form of equivalence con-
straints) is used to learn a pairwise function that adequately
captures the structure of the space and the relations between
the data-points.
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Unlike the classical learning scenario, where one attempts
to learn some function f : X → Y that approximates the
relation between a given input and its resulting output using a
training sample S = {(s1, r1), (s2, r2), . . . (sN , rN )}, distance
functions provide information about the similarity of pairs of
points - essentially capturing relations within the input data-
points themselves D : S × S → R rather than an input-
output relation. In some cases capturing the relations between
data-points can provide information which cannot be easily
extracted from directly estimating input-output relations. Such
cases occur when the input-output function is highly complex,
multi staged, or just difficult to estimate. In other cases, the
structure of the space is what one is interested in (rather than
the transformation).

In the case of the characterization of single neurons, both
incentives for using distance function learning appeal: on the
one hand estimating the actual transformation is hard and
poses many physiological and technical limitations. On the
other hand, we argue, information about the partition of space
may in many cases be much more interesting than predicting
the actual response. Ideally, learning an adequate distance
function may render the task of response prediction redundant.

III. EXPERIMENTAL SETTING

A. Problem formulation

Our approach is based on the idea of learning a distance
function over the stimuli space, using side-information ex-
tracted from the response space. The initial data consists of
stimulus-response paired representations. To generate the side-
information, we use a similarity measure over pairs of points
in the response space. These are used in turn to generate
equivalence constraints on pairs of stimuli: two stimuli are
related by a positive equivalence constraint if their paired
responses are highly similar; they are related by a negative
equivalence constraint if their paired responses are highly
dissimilar.

Next, this side information is used to train an algorithm
that learns a distance function between pairs of stimuli points,
thus capturing implicitly the structure of the stimuli space as
induced by the cell. In our framework, the cell becomes a
teacher, specifying similarities between stimuli using its own
language of action potentials. These similarities are then used
to learn a cell-specific distance function over the space of all
possible stimuli. This learned distance function should reveal
what exactly is represented by the changes in the response of
the specific cell.

We can formally define the computational task as follows:

Input: A set of stimuli-response pairs {si, ri}Ni=1

1) Represent the responses and stimuli in their own ’nat-
ural’ feature space, along with a predefined similarity
measure in the responses space.

2) Use the responses to extract equivalence constraints on
stimuli, as described above.

3) Learn a distance function over the stimuli space
D(si, sj)→ R using these constraints.

4) Use the generated distance function to understand and
predict the nature of stimuli space.

In the remainder of this section we present the details of our
suggested scheme and how it is used for the characterization
of visual neurons.

B. Neural computational setting implementation

The data was collected by Freedman et al [6], [7] and
consisted of stimuli-response pairs of data recorded in the ITC
and PFC of macaque monkeys. The stimuli used consisted
of a continuous set of cat and dog stimuli constructed from
six prototypes with a three-dimensional morphing system. The
stimuli were generated by morphing different amounts of the
prototypes (see Fig. 1).

This allowed to continuously vary the stimulus shape, and
precisely define a category boundary. The category of a
stimulus was defined by whichever category contributed more
(50%) to a given morph. The behavioral paradigm required
monkeys to release a lever if two stimuli (separated by a 1
sec delay) were from the same category (a category match),
see [6], [7] for details. The continuos nature of the stimuli
in combination with this behavioral task presumably broke
smoothness of response over stimuli space making the task
difficult for simple models.

(a) 100% (b) 80% (c) 60% (d) 40% (e) 20% (f) 0%

Fig. 1: A morph line between ’Cat I’ (left) and ’Dog I’ (right). Three
Prototypes of dogs and three prototypes of cats were morphed in six levels of
inter-species. 100%, 80% ,60%, 40%, 20%, 0% and 4 levels of within species
morphing 100%, 60% 40% 0% yielding 42 Cat-Dog morphs and 12 within
species morphs.

1) Data representation: As input for our learning algorithm
we used the first 20 principal components of a gray scale
representation of the images. The neuronal response for each
stimulus was represented as a vector containing in each of
its entries the spike rate of one out of multiple stimulus
presentations (trials), where the number of trials per stimulus
varied in the range 7-13.

C. Obtaining equivalence constraints from neural data

For the sake of simplicity, the distance between responses
was measured using the Cohen’s d which is defined as
the difference between two means divided by the standard
deviation for the data, thus creating a distance matrix over
all pairs of responses. This is very similar to taking the F-
statistic of a 1-way ANOVA between vectors of responses
over multiple trials. By choosing Cohen’s d as our response
distance measure, we implicitly assume that responses of the
cells to different stimuli , are normally distributed across trial
repetitions to same stimuli and are generally of equal variance
(homoscedasticity assumption), but may be characterized by
different means.
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We then used the complete linkage algorithm to cluster
the data into 8 clusters,2. All of the points in each cluster
were marked as similar to one another, thus providing positive
equivalence constraints. Negative constraints were determined
to exist between points in the 4 furthest clusters.

D. Training a distance function
We took the scheme described above and implemented it

using the Kernel-Boost distance learning algorithm described
in [20],3 Kernel-Boost is a variant of the Dist-Boost algorithm
[21] which was used in [16] and showed promising results.
Kernel-Boost is a semi-supervised distance learning algorithm
that learns distance functions using unlabeled data-points and
equivalence constraints. While the Dist-Boost algorithm has
been shown to enhance clustering and retrieval performance,
it was never used in the context of classification mainly due
to the fact that the learnt distance function is not a kernel (and
is not necessarily metric). Therefore it cannot be used by the
large variety of kernel based classifiers that have shown to
be highly successful in fully labeled classification scenarios.
Kernel-Boost alleviates this problem by modifying the weak
learner of Dist-Boost to produce a ’weak’ kernel function. The
’weak’ kernel has an intuitive probabilistic interpretation - the
similarity between two points is defined by the probability that
they both belong to the same Gaussian component within the
constrained Gaussian Mixture Model (cGMM) learned by the
weak learner.

An additional important advantage of Kernel-Boost over
Dist-Boost is that it is not restricted to model each class at
each round using a single Gaussian model, therefore removing
the assumption that classes are convex. This restriction is
dealt with by using an adaptive label dissolve mechanism,
which splits the labeled points from each class into several
local subsets. An important inherited feature of Kernel Boost
is that it is semi-supervised, and can naturally accommodate
unlabeled data in the learning process.

For each neuron, a subset of all pairs of stimuli was selected
such that the responses of the two stimuli in a pair were either
very similar or very dissimilar. The distance function was
trained using a cross validation scheme to fit these constraints.
The resulting distance functions generalized to predict the
distances between the responses of a test stimulus and all
trained stimuli.

Evaluation: We used a number of ways to evaluate the
quality of the learned distance function. First, we evaluated
the learned distance function by rank correlating (Spearman)
the learned distances to the actual distances as measured over
the cell responses and measured using Cohen’s d. In a second
evaluation step, the distances were used to cluster the stimulus
data, which was then compared with the clustering induced by
the cell responses; the accordance between the two clusterings
was measured using the Rand index. Finally, the distance
function was used along with a KNN classifier to generate
predictions for novel samples in a cross validation scheme.

2We found that choosing this number of clusters does not over constrain
the problem not positively nor negatively

3In our comparative study Kernel-Boost performed extremely well, espe-
cially when given only a small amount of data.

IV. RESULTS AND EVALUATION

We narrowed our analysis to neurons which displayed some
stimulus selectivity (not necessarily category selectivity). Such
selectivity was established by performing 1-way ANOVA with
each of the 54 samples as grouping factors at p < 0.01. This
analysis resulted in 162 ITC neurons and 61 PFC neurons.
However, while this procedure filters out non discriminative
cells it still keeps cells that are selective to a very small
number of stimulus (1-3 stimulus). Since this analysis is a
demonstration of a new technique we limit it to the ten most
selective cells in each setting. 4. We start the results analysis
by measuring the success of the learner to fit and generalize
the distances as defined by the responses (Sec. IV-1). We then
continue to show how this knowledge can be used for response
prediction (Sec. IV-2) and stimulus classification (Sec. IV-3).

1) Fitting Power and Generalization: As a first step we
examined the ability of our algorithm to fit the distances as
induced by the cell responses. We evaluated this by measuring
the mean Spearman rank correlation between the distances
computed by our distance learning algorithm and those in-
duced by the cell as measured by the ’actual’ distances over
the responses: we use our distance function to calculate the
distances between the stimuli and check weather close pairs of
stimuli (as defined by a cell) are indeed close as measured by
our cell specific distance function. The results as seen in Fig. 2
(left most bar) show dramatic improvement after learning.

After establishing the improvement in fitting power across
both data sets, we turned to evaluate the generalization prop-
erties of the algorithm. We tested three scenarios: Leave-One-
Out (LOO) where at each simulation one stimulus was left out
of the training set and used for testing, Leave-Five-Out (LFO)
and Leave-Ten-Out (LTO) where a random sample of five and
ten (in accordance) stimuli were left out of the training set for
later test (20 repetitions). For each stimulus that was tested
in one of this manners, we measured its distance to all other
stimuli using the learned distance function. We then computed
the rank order correlation coefficient between the learned
distances in the stimulus domain, and Cohen’s d between
the corresponding response vectors. This procedure yielded a
single correlation coefficient for each of the simulations using
the stimuli which were left out. To measure performance, we
took the average of the correlation coefficient over all runs for
each cell.

The results (Fig. 2) show persistent improvement in test
correlation in all scenarios, as compared to baseline (naive)
correlation. These results highlight the fact that the algorithm
can generalize well, and some aspects of topology of the
stimulus space have indeed been captured. Test correlation
scores are generally reduced as the size of the sample used
for training is reduced, but the reduction is minor. Finally,
individual cells also displayed very strong correlation between
training performance and test performance. (Not shown)

4Cells that did not display stimulus selectivity, or only displayed marginal
selectivity during the recording setting cannot be used as ’teachers’ when data
is so sparse (54 stimulus) and are thus omitted from the analysis. We claim
that using our technique all cells will ultimately be guided to areas of stimuli
space with high selectivity and will thus allow learning. All reported results
pertain to this subset of the data.
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Fig. 2: Distance correlation score. 1) Trained vs. Test vs. Naive (distances between images) performance (upper row): The algorithm achieved a dramatic
increase in average rank correlation, suggesting that some aspect of the structure of stimulus space was indeed captured. Correlation between train and test
scores were in the order of 0.9 (Not shown).

Interestingly, we have observed that some of the stimuli
were more easily predictable than others when left out of the
training set. Presumably good results will ultimately depend
on the quality of sampling of stimulus space, a task to which
this algorithm can be helpful by pointing out to interesting
areas in the stimulus space.

2) Generating response predictions: Having proved the
generalization properties of the learning algorithm, we attempt
to use the newly learnt distance function to generate a response
prediction to novel stimuli. We do this by matching to each
novel stimulus its 1st -Nearest Neighbor (1-NN) from the
training sample using our learnt distance function. We then
predict that the cell would respond to the novel stimulus in a
similar way to its response to this matched 1-NN stimulus. We
note that since the stimulus space is rather restricted in our
experimental setting, responses tend to be relatively smooth
locally, in the sense that similar (gray level) stimuli tend to
give rise to similar responses. Thus, even the naive 1-NN
predictor, based on the inter-stimuli distance in the original
grey-level representation, is expected to perform well in most
cases. We compared our prediction scheme to both the linear
regression predictor and a naive prediction based on the 1-
NN as computed using the gray levels of the stimuli. Our
prediction method outperforms both competitors, as shown
in Fig. 3. The success in prediction, and our advantage over
the alternative predictors, is highly dependent on the size of
the training sample - it increases with sample size, which
is consistent with the increase in test distance correlations
demonstrated earlier. Specifically, we do better or equal to
other predictors in 64%, 66%, 61% for ITC cells, and 68%
65% and 61% for PFC cells, with 53, 49, 44 training samples
respectively.

3) Peeking into the semantics: Inferring iso-response man-
ifolds: A single cell can divide the world it sees to a few iso-
response sets. This division is reflected by a distinct response
pattern to each of these sets. In our setting, for the sake of
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Fig. 3: Prediction advantage: shown above is a measure for the success
of response prediction. The quality of a prediction success is calculated as
the normalized absolute distance to actual response: |prediction−response|

std(response)
,

In other words we measure how many standard deviation our prediction is
from the actual response. Our algorithm is advantageous in the majority of
the scenarios both against naive KNN predictor (Naive) and against a linear
regressor (regress). This advantage becomes stronger as sample size increases.

simplicity, we assume that a cell induces a binary partition on
the stimulus space and thus defines two iso-response sets.

The learnt distance function can be thought of as somewhat
analogous to a transformation of the feature space. We now ask
- in the transformed space, is the division to iso-response sets
more evident? does this transformation make the input space
easier to analyze and understand? To answer this question,
we visualize the data using 2-D embeddings. We use classic
MDS to compare three embeddings: one based on the true
distances in response space (presumably the goal embedding),
a second based on the Euclidean distance in the original grey-
level features space, and a third based on the learnt distances.
Specifically, we show two examples of cells in a leave-ten-
out setting in Fig. 4. Clearly the embedding based on the
learnt distances is more similar to the goal embedding than
the original one. Moreover, these response-induced partitions
are evident in stimulus space after distance transformation,
but hardly evident in the original feature space. This result
was found for other cells as well. The point to appreciate
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here is the fact that while creating the cell embedding (left)
is illustrative in figuring out the semantics of the cell, it is
depended completely on the actual recording experiment. Our
distance based embedding, however is not and can be used on
any number of (possibly unused) data-points.

Cell Induced Distances Gray Induced Distances Learnt Distances

Fig. 4: Visualizing classification effect: Two cells were selected to display
the effect of learning on the feature space topology, which is visualized via the
embedding of points in a 2-D space. For each cell we show embeddings based
on response distances (left column), on original gray levels values (middle
column), and based on the learnt distance function (right column). In each
case we used classic MDS to embed the data points in 2-D. Points were
partitioned into two iso-response sets according to the response they elicit:
red circle indicate points that elicited high response while blue square points
that elicited low response. The goal of the learner was to be able to replicate
the partition induced by the cell (left column). Arrows mark points that were
left out during the training phase.

V. SUMMARY AND CONCLUSIONS

To begin the analysis, for each cell from the training sample,
the stimuli were divided to N clusters according to the elicited
cell’s responses. Next, we used our algorithm to learn a
distance function for each cell separately, using equivalence
constraints extracted from the clustered stimuli. We then used
the learnt distance matrix to generate response prediction and
to re-cluster unseen stimuli. In order to visualize the results,
by way of simplicity and as a good abstraction, we assumed
that the cell divides the world into two iso-response manifold:
’Response’/ ’No Response’. We then showed in Fig. 4 that this
partition is captured almost perfectly when using the learnt
distances between stimuli.

Our proposed scheme can serve as an integral part in a
neuroscientist’s experimental setup. An effective machinery
for distance function learning can help direct the investigator
towards ”interesting” areas in the stimuli space as defined by
the cell itself, and thus reduce the time and frustration involved
in a search based on trial and error. For that to happen, we plan
to develop the scheme so that it will work in an online manner,
being able to handle information fast and in an accumulative
manner.
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