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The detection of object boundaries is a critical first step for many visual processing tasks. Multiple cues
(we consider luminance, color, motion and binocular disparity) available in the early visual system may
signal object boundaries but little is known about their relative diagnosticity and how to optimally com-
bine them for boundary detection. This study thus aims at understanding how early visual processes
inform boundary detection in natural scenes. We collected color binocular video sequences of natural
scenes to construct a video database. Each scene was annotated with two full sets of ground-truth con-
tours (one set limited to object boundaries and another set which included all edges). We implemented
an integrated computational model of early vision that spans all considered cues, and then assessed their
diagnosticity by training machine learning classifiers on individual channels. Color and luminance were
found to be most diagnostic while stereo and motion were least. Combining all cues yielded a significant
improvement in accuracy beyond that of any cue in isolation. Furthermore, the accuracy of individual
cues was found to be a poor predictor of their unique contribution for the combination. This result sug-
gested a complex interaction between cues, which we further quantified using regularization techniques.
Our systematic assessment of the accuracy of early vision models for boundary detection together with
the resulting annotated video dataset should provide a useful benchmark towards the development of
higher-level models of visual processing.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Natural scenes constitute a rich source of visual information,
carried by a variety of visual cues. Previous work has shown that
our visual system does indeed rely on a combination of cues to
solve different visual tasks including orientation (Cavanagh,
1992) and depth (Young, Landy, & Maloney, 1993; Johnston,
Cumming, & Landy, 1994; Tassinari, Domini, & Caudek, 2008) anal-
ysis, biological motion recognition (Thurman & Lu, 2013) and
object detection (Vuong, Hof, Bülthoff, & Thornton, 2006).

Because image properties are expected to differ markedly
across object boundaries, boundary detection is a prime testbed
to study the diagnosticity of individual cues and of their combina-
tions. For instance, borders defined by both chromatic and lumi-
nance cues are more visible than those defined by only one of
these cues, with each cue making independent contributions
(Frome, Buck, & Boynton, 1981). Beyond the pairing of chromatic
and luminance cues, there exist complex interactions between all
pairings of luminance, motion, color and texture cues (Rivest &
Cavanagh, 1996). In the context of texture-defined boundaries, an
ideal observer model of cue combination accounts well for annota-
tors’ judgment of the relative location of two edges (Landy &
Kojima, 2001).

Consistent with the results from these psychophysical studies,
neurophysiology studies have shown the existence of cue-
independent boundary-selective neurons in higher order visual
areas in both the ventral (Sary, Vogels, & Orban, 1993) and dorsal
(Albright, 1992; Geesaman & Andersen, 1996) streams of visual
processing in cortex. Some studies have reported the existence of
such cue-independent neurons in early stages of visual processing
in areas V1 and V2 (Leventhal, Thompson, Liu, Zhou, & Ault, 1995;
Leventhal, Wang, Schmolesky, & Zhou, 1998; Sincich & Horton,
2005).

Overall, using controlled artificial stimuli, previous work has
demonstrated our visual system’s ability to efficiently combine
visual cues for the detection of boundaries. However, to date,
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relatively little is known about the diagnosticity of these various
cues in natural environments and how they should be optimally
combined. One promising research direction is to try to character-
ize the relevant environmental constraints for the detection of
boundaries. In particular, the past decade of research has wit-
nessed a rapid growth in the use of statistical methods towards
natural scene analysis to better understand what types of visual
cues provide useful information (see Simoncelli & Olshausen,
2001; Geisler, 2008 for reviews).

Early work has shown that there exists pairwise statistical
dependencies between nearby pixels, and that these dependencies
are consistent with the Gestalt principles of co-linearity and paral-
lelism (Krüger, 1998). Further work examined second-order spatial
statistics and found long-range correlations that adhered to the
geometric principle of co-circularity (Sigman, Cecchi, Gilbert, &
Magnasco, 2001). However, the statistical analysis in both of these
studies was not limited to object boundaries but included lower-
level edges, possibly part of textures and shading flows.

Two important studies expanded on this line of work by limiting
their statistical analyses to hand-annotated boundaries in natural
images. Geisler et al. measured the pairwise statistics of edge ele-
ments as a function of their geometry and contrast polarity
(Geisler, Albrecht, Crane, & Stern, 2001; Geisler & Perry, 2004).
When considering the geometrical and contrast relationship
between one reference and another element, for any given distance
between the two elements, it was found that the most likely geo-
metrical relationship was one consistent with approximate co-
circularity (Field, Hayes, & Hess, 1993; Kapadia, Ito, Gilbert, &
Westheimer, 1995; Adini, Moses, & Ullman, 1997; Li, 1998;
Geisler et al., 2001). Exploiting this co-circularity principle was
shown to yield better detection accuracy (Li, 1998; Ross, Badcock,
& Hayes, 2000; VanRullen, Delorme, & Thorpe, 2001). Elder and
Goldberg further extended the approach by modeling the sequence
of elements along a boundary using a Markov chain, and consider-
ing arbitrary pairs of tangents on the boundary to compute pairwise
statistics of edge elements (Elder & Goldberg, 2002).

Beyond grayscale images, the study of the spatio-chromatic
structure of natural scenes suggests that luminance and chromatic
edges are not independent of each other (Fine, MacLeod, &
Boynton, 2003). In fact, they tend to co-occur around boundaries
salient to human perception (Zhou & Mel, 2008) and are linked
to higher-order statistical dependencies (but see also Hansen &
Gegenfurtner, 2009). Several researchers have suggested that
incorporating mechanisms of divisive normalization (which is a
form of nonlinear gain control found in cortex (Carandini &
Heeger, 2012)) over the outputs of edge operators would effec-
tively reduce these correlations (Simoncelli & Schwartz, 1999;
Zhou & Mel, 2008; Ramachandra & Mel, 2013; see also Zetzsche,
2001 for a review).

More recently, a study assessed the diagnosticity of texture,
luminance and color cues for the detection of boundaries in images
of close-up foliage, an ecologically important component of pri-
mates’ natural environment (Ing, Wilson, & Geisler, 2010). Various
statistical classifiers were trained onmultiple imagemeasurements
(including luminance and chromaticity computed over individual
image patches as well as the difference along these dimensions
between pairs of patches). Participants judged whether pairs of
image patches sampled from the same scenes at some spatial sep-
aration belonged to the same physical surface. An ideal classifier,
which combined optimally all image measurements, was found to
agree well with human psychophysics data for the same task.

The role of various visual cues for image segmentation has also
been studied from the perspective of computer vision. One can dis-
tinguish between two general approaches to image segmentation.
Edge-based approaches typically rely on the direct detection of
boundary elements by coinciding edge detectors which are then
grouped together to form boundaries. Early approaches including
the popular Canny, Sobel and Prewitt detectors, have initially
focused on local gradient computations (see Bowyer, Kranenburg,
& Dougherty, 2001 for a comparison between representative
approaches). These edge-based approaches were later extended
to color images using color-edge operators (Koschan & Abidi,
2005; Tamrakar & Kimia, 2007).

Region-based approaches, on the other hand, aim at partition-
ing an image by assessing the low-level coherence of individual
visual cues (such as luminance, color, texture, or motion attributes)
to sequentially partition an image into regions (e.g., Felzenszwalb
& Huttenlocher, 2004; Cremers, Rousson, & Deriche, 2006;
Moore, Prince, Warrell, Mohammed, & Jones, 2008; Levinshtein
et al., 2009; Veksler, Boykov, & Mehrani, 2010; Achanta et al.,
2012). A prominent example is the Pb system (Martin, Fowlkes, &
Malik, 2004) and its derivatives mPb and gPb (Arbelaez, Maire,
Fowlkes, & Malik, 2010), which yielded state-of-the-art results on
natural scenes. It extends a popular class of biologically-
motivated algorithms for boundary detection based on the filter–
rectify–filter model (e.g., Wermser & Liedtke, 1982; Voorhees &
Poggio, 1988; Bovik, Clark, & Geisler, 1990; Malik & Perona,
1990; Caelli, 1993), which are built on the rectified outputs of filter
banks such as Gabor wavelets, Gaussian derivatives or steerable fil-
ters that coarsely mimic processing by orientation-selective cells
found in the primary visual cortex (V1) (Hubel & Wiesel, 1962).

In this approach, a unique pattern of activation across all filters
is considered to be a distinct texture, and boundaries are detected
when two neighboring regions of the image are composed of dif-
ferent textures. The key operation is an additional filtering stage,
based on the v2 operator (also referred to as the oriented gradient
operator), which divides a local circular neighborhood in the image
into two halves along some orientation and measures the differ-
ence between empirical distributions of the cue values in either
of the two halves. This difference is computed using a v2 histogram
distance between binned estimates of the distribution of values
taken by the given cue.

More recently, the Pb approach was extended to combine static
boundary cues with low-level motion cues computed from a
motion-gradient channel as well as motion cues derived from opti-
cal flow (Sundberg, Brox, Maire, Arbaelez, & Malik, 2011) (see also
e.g., Wang & Adelson, 1994, 1995, 1998, 1998, 2000 for earlier rep-
resentative work offering evidence that motion cues contain
figure-ground and depth ordering information in addition to
boundary information).

Depth cues are also useful for boundary detection and image
segmentation. For instance, disparity information estimated from
stereo cameras can be combined with edges computed from lumi-
nance and/or chrominance values (Woo, Kim, & Iwadate, 2000;
Gelautz & Markovic, 2004). More recently, because of the increas-
ing availability of RGB-D data from depth sensors, several studies
have focused on range data to detect boundaries (e.g., Silberman,
Hoiem, Kohli, & Fergus, 2012; Ren, Bo, & Fox, 2012; Gupta, Arbel,
& Malik, 2013). In particular, the Pb framework was extended to
include depth, convex normal, and concave normal gradient chan-
nels (Gupta et al., 2013).

The diagnosticity of particular cues for object boundary detec-
tion (whether located on or off a boundary) may depend on their
extended visual context. Learning-based approaches have proven
successful in constructing mid-level visual representations able
to incorporate said context (Dollar & Belongie, 2006; Lim, Zitnick,
& Dollar, 2013). Such approaches are a hybrid between edge-
based and region-based boundary detection.

Overall, previous work in early vision has demonstrated that
the combination of low-level visual cues, including color, motion,
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depth and luminance, enables more accurate segmentation of nat-
ural scenes. However, the diagnosticity of early visual cues alone or
in combination has not been studied systematically. This study
thus aims at gaining a deeper understanding of how early visual
processes inform boundary detection in natural scenes.

To address this question, we collected a video dataset, which
consists of short color stereo video sequences collected with a
consumer-grade camera. The dataset was manually annotated to
provide a ground-truth for the locations of physical boundaries.
Inspired by the notion of elemental measurements in early vision
put forth by Adelson and Bergen (1991), we further implemented
an integrated approach to derive such visual elements across mul-
tiple cues (luminance, color, motion and stereo) in a systematic
way1. Here, we considered plausible scenarios to extract boundary
signals from these visual elements: an edge-based (first-order)
approach where the responses of the filters to different cues are used
directly to detect object boundaries, and a region-based (second-
order) approach based on the aforementioned Pb framework applied
to the proposed visual elements computed over different cues. We
trained multiple machine learning classifiers on the various
cues—both in isolation and in combination—and assessed the accu-
racy of the resulting classifiers for the detection of boundaries.
2. Materials and methods

2.1. Video collection

We built a rich video dataset composed of short binocular video
sequences of natural scenes using a consumer-grade (Fujifilm)
stereo camera. We considered a variety of locations (from univer-
sity campuses to street scenes and parks) and seasons to minimize
possible biases. We attempted to capture more challenging scenes
for boundary detection by framing a few dominant objects in each
shot under a variety of viewing angles, distances, and lighting con-
ditions. All sequences were recorded by a moving observer (either
on foot or in a motorized vehicle). Additionally, about 60% of the
frames included objects moving in the scene (including zoo ani-
mals, pets, pedestrians and cars). The dataset contains 100 scenes,
each consisting of a short (10-frame) stereo (left and right views)
color sequence. Each sequence was sampled at a rate of 30 frames
per second. Each frame had a resolution of 1280 by 720 pixels. Rep-
resentative frames are shown in Fig. 1.
2.2. Ground-truth annotations

Direct measurements of ground-truth information for the loca-
tion of physical boundaries would be extremely challenging in nat-
ural scenes; hence a common shortcut is to rely on manual
segmentation by human observers (Geisler et al., 2001; Elder &
Goldberg, 2002; Martin et al., 2004). A common assumption is that,
given enough time and the ability to zoom in and out of an image,
annotators can accurately recover boundaries from the environ-
ment, e.g., ones due to differences between the material properties
of two physically distinct surfaces. As we will discuss later, the rel-
atively high inter-subject consistency resulting from this proce-
dure suggests that manual boundary annotation can provide
useful ground-truth information.

Here, we computed ground-truth boundary information by col-
lecting two sets of manual annotations for the last frame of the left
stereo view for each individual video sequence. Thereafter, we
refer to the main set of annotations as the boundary annotations.
1 Similar visual elements based on oriented filters also form the backbone of the
Berkeley Pb segmentation system, which exhibits state-of-the-art accuracy (Martin
et al., 2004; Arbelaez et al., 2010).
Unless specified otherwise, this is the set used for most analyses
in the paper. Hand-segmentation was performed by paid under-
graduate students (n ¼ 5) at Brown University (Providence, RI).
We wrote custom software to enable manual annotations within
a web browser. Annotators were not limited in the amount of time
they had available to complete the task. They were paid by time
spent annotating boundaries, to the condition that they annotate
the entirety of the dataset.

Segmentation involved annotating the contours defining the
boundaries of each object’s visible surface regions. We gave all
annotators the same basic instructions as were provided for the
Berkeley dataset (see Martin et al., 2004 for details): ‘‘You will be
presented a photographic image. Divide the image into some number
of segments, where the segments represent ‘‘things” or ‘‘parts of
things” in the scene. The number of segments is up to you, as it
depends on the image. Something between 2 and 30 is likely to be
appropriate. It is important that all of the segments have approxi-
mately equal importance”.

Representative annotations are shown in Fig. 2. Additional sam-
ples can be visualized by browsing the database at http://serre-
lab.clps.brown.edu/resource/multicue. Fig. S1 shows a histogram
illustrating the distribution of the number of labeled pixels in the
images.

To compute an estimate of the inter-subject agreement, we con-
ducted a leave-one-annotator-out procedure, where each annota-
tor was considered exactly once as a cue, and evaluated against
the union of the rest of the annotators. In a sense, the latter set
of all remaining annotators is tested like any other ground-truth,
using the same metric (the F-measure; see below). We found man-
ual annotations to be highly consistent despite the challenges asso-
ciated with the collection of such annotations arising, e.g., because
of inherent differences in the strategies used by the observers (see
Guo & Kimia, 2012 for a discussion). We report the following F-
measure for inter-subject agreement: F ¼ :76� 0:017, which is
comparable to the F ¼ :80 reported in Martin et al. (2004) for the
Berkeley dataset.

Subsequently, we collected a set of lower-level edge annotations
(inter-subject agreement: F ¼ :75� 0:024), by asking participants
to annotate all edges and boundaries in the image; in this case,
tracing contours that did not correspond to ‘‘things” or physical
boundaries such as shadows was encouraged. This new set of
lower-level annotations is reminiscent of Guo and Kimia (2012)
but extends their approach to binocular video sequences. Fig. 2
shows the difference between the two sets of annotations on rep-
resentative scenes; see also Fig. S1.

2.3. Accuracy measure

To evaluate the accuracy of the different cues against ground-
truth boundary annotations, we used the Berkeley evaluation soft-
ware (Arbelaez et al., 2010). This evaluation pipeline, which is
standard in the field, matches machine-produced boundaries
against hand annotations while allowing a reasonable amount of
slack, as opposed to a naive pixel-wise difference between the
two. This is essential for proper evaluation of the different cues
as a naive scheme could potentially over-penalize the detection
of boundaries at slightly offset locations. It is not reasonable to
expect an algorithm to retrieve perfect boundary localization since
the human annotations display such variability as well.

The evaluator returns a precision-recall curve for any boundary
classifier output. Here we report the F-measure, a standard accu-
racy measure that captures an even balance between precision
and recall. Other standard measures include precision and recall
from signal detection theory, as well as the area under the
precision-recall curve and will be given in the Supplementary
Information.

http://serre-lab.clps.brown.edu/resource/multicue
http://serre-lab.clps.brown.edu/resource/multicue


Fig. 1. Representative frames sampled from the dataset.
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2.4. Machine learning classifiers

The Scikit-Learn library (Pedregosa et al., 2011) was used to
evaluate the accuracy of the various cues and their combination.
We used a L2-norm regularized logistic classifier, which was shown
to perform on par with more complex classifiers for this problem
(Martin et al., 2004). The regularization parameter was selected
using stratified 3-fold cross-validation. All accuracy metrics were
averaged over 3 random splits of the training/test data with 80
images for training and 20 for test. All cues were optimized, either
individually or in combination, using the same pipeline, unless
otherwise specified. Each classifier was trained on one million
samples.

The approach in Arbelaez et al. (2010) uses coordinate ascent on
the F-measure as an objective function. It is computationally pro-
hibitive as it involves computing the F-measure over the whole
training set for every cycle of the learning phase. Thus, we
departed from the original paradigm described in Arbelaez et al.
(2010) and used a pixel-wise error measure for training but kept
the F-measure for final evaluation.



Fig. 2. Boundary annotations for the sample scenes shown in Fig. 1. Blue lines correspond to our default set of annotations, i.e., higher-level, object-centric boundary
annotations. Red lines correspond to (finer-grained) lower-level edge annotations collected as a control (see Methods for details on how these annotations were collected).
Pink lines correspond to annotations that are common to both sets. Annotations have been dilated for display purposes.
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The visual features provided to each classifier were typically
a few pixels wider than the boundary annotations, which was
problematic since it was likely to respond strongly on the pixels
immediately next to the annotation that were by definition labeled
as non-boundary. Hence, we did not incorporate pixels that were
within five pixels to the closest ground-truth boundary in the
training set.
3. Computational model

All software used for the computation of visual features was
written in Python, and used Nvidia’s cuDNN bindings to accelerate
the computations on graphical processing units (GPU). We
used Seaborn/Matplotlib for data visualization. The data set and
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source code is made available at http://serre-lab.clps.brown.edu/
resource/multicue.

All experiments ran on Brown’s large computing cluster at the
Center for Computation and Visualization (CCV) with >500 Ter-
aflops of computing power. Feature computation across all visual
cues took about 100 computing nodes/processes, 64 GB of memory
each, for a couple of days. Training individual classifiers on individ-
ual nodes required 256 GB of RAM for at most a week. Assessing
the accuracy of cues using the benchmarking software from
(Arbelaez et al., 2010) required about 200 processes for a week.

3.1. Luminance

Our starting point was a standard battery of Gabor filters,
which, along with derivative-of-Gaussian filters, constitutes the
backbone of many boundary detection systems (Malik & Perona,
1990; Martin et al., 2004; Arbelaez et al., 2010). In our implemen-
tation, we considered 3 filter sizes (or scales): 7-by-7, 13-by-13,
and 19-by-19 pixels. For each filter size s, the standard deviation
of the Gaussian envelope was fixed at s=3. Additionally, we consid-
ered, for each filter size s, 3 spatial frequencies for the harmonic
component of the Gabor filter: s=4; s=2, and s. We considered 8
equally-spaced orientations for each combination of filter size
and spatial frequency. We added one center-surround channel
for each filter size, for a total of N ¼ 3 � ð3 � 8þ 1Þ ¼ 75 filters for
the luminance model. Then the orientation energy was computed
directly from the outputs of quadrature pairs of filters with a phase
difference of p=2. Lastly, we considered a normalization step over
multiple orientations (see below). The use of Gabor filters, the
energy model and normalization are standard in studies of natural
boundary statistics (e.g., Krüger, 1998; Geisler et al., 2001; Geisler,
Perry, & Ing, 2008; Sigman et al., 2001).

Earlier studies relied on fixed-scale filters (Krüger, 1998;
Sigman et al., 2001; Geisler et al., 2001) (but see also Elder &
Goldberg, 2002). Using filters that vary over a range of scales and
spatial frequencies was necessary to capture variations of the
image power spectrum across natural scenes. It was also found
experimentally that the addition of multiple scales and spatial fre-
quencies yielded a moderate improvement in boundary detection
accuracy (contrary to what was found in Arbelaez et al. (2010)
which only considered multiple scales; results not shown). We
contend the cause for this improvement is the inclusion of multiple
spatial frequencies in addition to filter sizes, which allows some fil-
ters to be selected for their robust responses on richly-textured
surfaces, and others to be leveraged for their preferential responses
to boundaries (see below). We next describe how we extended this
basic luminance channel to color, stereo and motion. An overview
of the proposed multi-cue approach is shown in Fig. 3.

3.2. Color

Several functions have been attributed to color vision, from
helping to find edible food (Dominy & Lucas, 2001; Regan et al.,
1998) to discriminating emotional states, socio-sexual signals and
threat displays on the skin of conspecifics (Changizi, Zhang, &
Shimojo, 2006) as well as facilitating scene and object recognition
(Gegenfurtner & Rieger, 2000; Wurm, Legge, Isenberg, & Luebker,
1993) and guiding visual searches in real-world scenes (Ehinger &
Brockmole, 2008) in addition to boundary detection (Lotto, Clarke,
Corney, & Purves, 2011). Psychophysical studies have shown that
chromatic mechanisms are spatially tuned for both orientation
and spatial frequency (Humanski & Wilson, 1993; Mullen &
Losada, 1999), supporting the idea that these channels have an
early cortical representation (Shapley & Hawken, 2011).

Here, we considered the early vision color model developed by
our group (Zhang, Barhomi, & Serre, 2012). This framework
extends the base Gabor (plus center-surround) filter pyramids to
processing along three chromatic opponent axes: R–G (red versus
green), R–C (red versus cyan), and B–Y (blue versus yellow), in
addition to a luminance-based Wh–Bl channel. We included both
single-opponent (SO) and double-opponent (DO) color channels
as described in Zhang et al. (2012). The model is similar to the
approach described in Johnson, Kingdom, and Baker (2005) with
the SO and DO stages closely related to first- and second-order
channels. Differences include an additional rectification stage at
the SO level (consistent with physiology) and a divisive normaliza-
tion stage proposed in Zhang et al. (2012) (see later), which are key
to robust boundary detection accuracy. In particular, the additional
normalization stage was found to be important both to reduce spu-
rious edge responses (Zhang et al., 2012) and to account for psy-
chophysical data of color similarity ratings (Zhang, Mély & Serre,
manuscript in preparation).

As shown in Zhang et al. (2012), SO units are strongly modu-
lated by chromatically opponent interactions between their center
and their surround (e.g., the response of the unit is facilitated by
blue light in the center and suppressed by yellow light in its sur-
round). However, these units are only weakly tuned to orientation.
As speculated in Hurlbert (1989) and demonstrated in Zhang et al.
(2012), such units respond mainly to surfaces. Conversely, DO
units are selective for a preferred chromatic opponent pair and
sharply tuned for orientation and frequency and respond mainly
to edges defined by (equiluminant) color contrast. While the exis-
tence of DO cells was initially subject to debate, it is now relatively
well established (see Shapley & Hawken, 2011 for a review).

We considered complex DO units that are invariant to a chro-
matic contrast reversal (e.g., red-green versus green–red). Their
responses are obtained by computing the energy of the two filters
within a preferred color-opponent pair. The corresponding units
are able to capture a wide range of equiluminant chromatic edges
and textures that would otherwise remain undifferentiated by a
purely luminance-based model.
3.3. Motion

Motion is a powerful cue to figure-ground segmentation. Many
biological organisms rapidly segregate camouflaged objects that
are set in motion (Segaert, Nygård, & Wagemans, 2009; Uttal,
Spillmann, Stürzel, & Sekuler, 2000) from their background. Infants
as early as 3 month old are already able to detect kinetic bound-
aries defined exclusively by motion cues (Kaufmann-Hayoz,
Kaufmann, & Stucki, 1986).

Here, we extended the basic oriented (luminance) filters
described above from the spatial domain to the spatio-temporal
domain by constructing spatio-temporal (3D) filters obtained by
drifting a base 2D filter orthogonally to its preferred orientation
along a (third) time dimension. This is equivalent to adding a
time-dependent periodic phase shift in the harmonic component
of the Gabor wavelet and multiplying the Gaussian term with a
temporal envelope term. The inverse of this period parameter is
also known as the temporal frequency, to which early motion-
sensitive cells are known to be tuned (see Bradley & Goyal, 2008
for review). For a given range of temporal frequencies, the direction
of drift is entirely determined by the filter’s orientation preference
such that a typically large oriented element will always be per-
ceived to be drifting orthogonally to its direction by a filter with
the corresponding orientation preference (this is known as the
aperture problem; see Bradley & Goyal, 2008). This is also consis-
tent with what is known about the early stages of motion percep-
tion (Bradley & Goyal, 2008). In our implementation, the sign of
temporal frequency corresponded to coherent motion in either
rightward or leftward direction.

http://serre-lab.clps.brown.edu/resource/multicue
http://serre-lab.clps.brown.edu/resource/multicue
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The center-surround luminance filter channel was extended to
the time domain by considering temporal modulation to detect
local variations in image brightness devoid of coherent motion
(also known as ‘‘flicker”). Together, following (Derpanis & Wildes,
2009), the spatio-temporal channel formed a basis covering the
spatio-temporal frequency domain capable of representing
dynamic textures. Alternative models of early motion processing
have also been proposed, which include three-dimensional Gaus-
sian derivative kernels (Simoncelli & Heeger, 1998).

3.4. Stereo

The model used for the computation of early stereo cues is part
of an extended model developed by our group (Kim, Mély & Serre,
manuscript in preparation) based on the disparity energy model
(Ohzawa, DeAngelis, & Freeman, 1990; Ohzawa, 1998). In the
model, the left and right views from each stereo scene are pro-
cessed with binocular filters, i.e., pairs of identical Gabor filters
(viz., each pair shares the same orientation, spatial frequency and
phase) — one for each view. One of the filters is horizontally shifted
with respect to the other in image coordinates; the displacement
between the two filters is binocular disparity. For each pair, the
monocular filter responses undergo summation followed by a rec-
tified squaring operation. Surfaces located in front of the fixation
plane have positive disparities, whereas those located behind it
have negative disparities, with the magnitude of disparity increas-
ing away in depth from the fixation plane. Thus, stereo cues may
reveal boundaries between two image regions located at different
depths but otherwise alike in visual properties.

3.5. Divisive normalization

In general, the raw outputs of the individual cue channels
described above tend to be quite noisy. As mentioned below the
disparity model is plagued by false matches between right and left
features and it often fails in complex natural scenes (Kim, Mély &
Serre, in preparation). Moreover, early vision models based on
linear filters are typically characterized by statistical dependencies
between filter outputs within any single cue, even when such
filters are designed to maximize independence (Wainwright,
Schwartz, & Simoncelli, 2002).

This is particularly problematic given that each cue indepen-
dently considers several properties (e.g., double-opponent color
encompasses all possible combinations for scale/spatial frequency,
chromatic contrast, and orientation), potentially resulting in unde-
sirable statistical dependencies. Here, we consider divisive normal-
ization, a computation known to alleviate this problem (Simoncelli
& Schwartz, 1999); it is related to the eponymous form of inhibi-
tion in the visual cortex (see Carandini & Heeger, 2012 for a
review).

Thus, we implemented divisive normalization over the appro-

priate pool of units: for each cue, we indexed each unit Xi;j
h1 ;h2 ;...;hn

by its respective preferred values along each of the sensory axes
relevant to that cue, h1; h2; . . . ; hn, as well as its position with
respect to image coordinates ði; jÞ. The unit gets normalized by all
unit activities with the same preferred tuning except for one:

Xi;j
h1 ;h2 ;...;hn

¼ Xi;j
h1 ;h2 ;...;hn

p

r2 þ
X
/1

Xi;j
/1 ;h2 ;...;hn

q þ . . .þ
X
/n

Xi;j
h1 ;h2 ;...;/n

q

 !r ;

where r2 is a constant to avoid division by zero, p, q and r are arbi-
trary exponents and X is the normalized output. Such a scheme
results in lower dependencies across each sensory axis for each
cue. In object recognition, a simplified version of this model leads
to very significant gains in accuracy with the proper normalization
(Jarrett, Kavukcuoglu, Ranzato, & LeCun, 2009; Zhang et al., 2012).

As for binocular disparity, the literature suggests the existence
of suppressive mechanisms between pairs of binocular inputs of
opposite phases (corresponding to a phase difference of 180�)
(Tanabe, Haefner, & Cumming, 2011). In practice, we have found
that implementing such interactions via the divisive normalization
circuit described above, whereby one binocular input at one (posi-
tion) disparity is inhibited by the outputs corresponding to the
same (position) disparity but with filters of opposite phases, elim-
inates false matches between left and right visual features and
yields a more accurate representation of disparity in the scene
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(see also Read & Cumming, 2007). Furthermore, it can be proven
theoretically that using divisive normalization to implement the
aforementioned inhibitory interactions between phase disparities
yields a representation that is the most accurate one that could
possibly be achieved given the filter bank used (Kim, Mély & Serre,
in preparation).

3.6. Intensity

We reused the brightness gradient from the ⁄Pb system, labeled
‘‘intensity” here. It is based on raw pixel intensities quantized to 32
levels with K-means in order to be consistent with other cues. Also
note that due to the lack of a corresponding filter, the edge-based
approach for this cue is not defined (see below).

3.7. Dimensionality reduction with PCA

Because the dimensionality of each channel varies across cues,
we normalized the dimension of each channel output using princi-
pal component analysis (PCA) in order to make their comparison
relevant. We kept the minimum number of dimensions (which var-
ied across cues) after projection on the principal component vec-
tors to account for 99% of the total variance.

3.8. Edges vs. textons

The output of any given cue corresponds to the response of a
battery of oriented filters plus a center-surround channel followed
by proper rectification and normalization. There are two major
prescriptions for how to leverage these filter responses to detect
object boundaries.

One approach is the edge-based approach, where the outputs of
oriented filters are interpreted as reflecting the presence of a
boundary. In this case, we attempted to classify whether a given
position lies on a boundary, using the output of the cue as a feature
vector. The key assumption is that the best-responding filter
should line up with the boundary to be detected. However, this
approach is often plagued by false positives, as many natural tex-
tures are characterized by strong oriented structures, which
induces the detection of spurious edges.

The second approach is the region-based approach, which aims
at partitioning an image using learned mid-level representa-
tions—fitting statistical models to various cues in each of a set of
regions. This is the approach taken in the Pb system (Martin
et al., 2004) and its derivatives mPb and gPb (Arbelaez et al.,
2010), which yield state-of-the-art results on natural scenes.

The key operation in Pb is a v2 operator (also known as an ori-
ented gradient operator). It first divides a local circular neighbor-
hood in the image into two halves along some orientation. Then,
it measures the difference between the empirical distributions of
the cue values for each half, by taking a v2 histogram distance
between binned estimates of these distributions. The distributions
can be estimated from filter outputs that co-occured often
throughout our dataset, corresponding to ‘‘universal textures”
(Arbelaez et al., 2010) that are present in natural scenes. These
can be identified by clustering filter bank outputs across scenes;
the K centroids then correspond to universal texture prototypes,
or textons. Each pixel is then assigned the integer index of the clos-
est texton, and the v2 operator is applied to the resulting assign-
ment map using K bins. We chose the same clustering algorithm
as in Martin et al. (2004), K-means clustering, as well as the same
number of cluster centers K ¼ 32. In practice, we found that
increasing the number K of textons seemed to have little effect
on the overall diagnosticity of any model associated to each cue.
We kept the same values as in Arbelaez et al. (2010) for the widths
of the oriented gradient operator: 10, 20 and 40 pixels.
4. Results

4.1. Scale selection and diagnosticity of individual cues

For all the visual cues considered, we evaluated each scale and
approach separately: for the edge-based approach, one classifier
was considered for each filter size (trained on the raw filter outputs
then evaluated against ground-truth). For the region-based
approach, one classifier was considered for each filter size and v2

operator size (two scale parameters). Keeping all scales separate
revealed discrepancies in accuracy between these as some scales
capture local image structure better than others. As a result, we
found that the best performing scale (for each cue and approach,
either edge-based or region-based) performed on par with or bet-
ter than a previous attempt to evaluate a cue by combining all
scales.

Thus, considering the best parameters for each cue, we found
color, luminance and intensity to be generally the most diagnostic
cues, whereas motion and stereo appeared to be significantly less
diagnostic in isolation (see Table 1). The full results, including
the accuracy of each cue at non-optimal parameters, measured
by different metrics such as the F-score (harmonic mean of preci-
sion and recall in a precision-recall paradigm), the precision (P),
the recall (R) and the area under the precision-recall curve (AUC),
can be found in Fig. S2.

We also compared the accuracies across conditions (region-
based against edge-based, boundary annotations against edge
annotations), filter sizes and scales for each cue in Fig. S3 (using
individual classifier F-scores).

4.2. Edges vs. textons

A comparison between the best (i.e., optimal parameters) edge-
based and the best region-based approaches is shown in Table 1 for
the boundary annotations. For each considered cue, the region-
based approach was found to be more accurate than the edge-
based approach. More surprising is the fact that the superiority
of the region-based approach over the edge-based approach was
not limited to the (higher-level) boundary annotations (corre-
sponding to boundaries which belong to ‘‘things” or ‘‘parts of
things”) but generalized, for all except the single-opponent (SO)
color cue, to (lower-level) edge-based annotations (corresponding
to all edges and not only object boundaries; see Fig. 4).

This suggests that the region-based approach, despite being
designed to capture higher-level boundaries in the image, remains
a fairly local operator, as it does not seem to be overly penalized by
the use of very low-level annotations. As expected, retrieving edge
annotations was a much easier problem for either approach than
higher-level boundary annotations although, as expected, the gap
between the two approaches was reduced going from boundary
annotations to edge annotations. In addition, a comparison of the
accuracy of each approach on the two annotation sets suggested
that the detection of (lower-level) edges remains a significantly
easier task than retrieving more ‘‘semantic” boundaries.
4.3. Cue combination

To learn the optimal cue combination, we concatenated the out-
puts of the various classifiers trained on individual cues (one clas-
sifier per cue per filter size for the edge-based approach, and one
classifier per cue per filter size and v2 size for the region-based
approach) to form a vector that was then passed to a second-
stage classifier. This second-stage classifier was trained to combine
the confidence (posterior probability of boundary) of each individ-
ual classifier (63 classifiers total).



Table 1
Accuracy (F scores) of individual cues evaluated against boundary annotations, for the
best (i.e., optimal parameter values) edge-based and region-based classifiers. The
region-based approach does consistently better.

Cue Luminance Color (SO) Color (DO)

F, best edge-based 0:65� 0:01 0:61� 0:02 0:63� 0:02
F, best region-based 0:68� 0:02 0:65� 0:01 0:66� 0:02

Cue Motion Stereo Intensity

F, best edge-based 0:61� 0:01 0:57� 0:01 N/A
F, best region-based 0:65� 0:02 0:58� 0:02 0:66� 0:01
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Fig. 4. Cue accuracy for the edge-based (squares) and the region-based (disks)
approaches evaluated against both (high-level) boundary annotations (x-axis), and
against (low-level) edge annotations (y-axis). All data-points are well above the unit
diagonal, meaning the recovery of edge annotations is an easier challenge. Apart
from color (SO), the region-based approach performs consistently better than the
edge-based approach.

Table 2
Accuracy (F score) of the optimal cue combination (Model) vs. ground-truth
annotations (Human). Confidence intervals correspond to the s.e.m. Top cues are
ranked according to their best F score across filter sizes, v2 sizes, and approaches
(region vs. edge). Note that it is possible for computational models to exhibit a higher
accuracy than the inter-annotator agreement, because a pixel marked as boundary is
considered a true positive if it is labeled by any observer. The comparatively lower
human level of agreement level is likely due to annotators’ low individual recall given
the overwhelmingly large number of admissible edges per scenes (R ¼ 0:65� 0:041).

Human Model Top cues

Boundary annotations 0:76� 0:017 0:72� 0:014 1. Luminance
2. Color (DO)
3. Intensity

Edge annotations 0:75� 0:024 0:83� 0:004 1. Luminance
2. Intensity
3. Motion
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A summary of the accuracy measures obtained of the optimal
cue combination as well as the three most individually diagnostic
cues against both sets of annotations is given in Table 2. The
learned cue combination was found to be more accurate that any
cue in isolation (Fig. S2). Shown in Fig. 5 are true boundaries recov-
ered by each cue for a sample frame. Shown in Fig. S4 are examples
of classifier outputs for representative visual cues and their
combination.

4.4. Cue selection and cumulative contribution to overall accuracy

To better understand how cues interact, we performed an anal-
ysis based on elastic net regularization (Zou & Hastie, 2005). This
approach is similar to LASSO regularization but more robust to cor-
relations between cues. In this framework, cue weights learned by
the classifier incur a penalty proportional to the sum of their L1

norm (causing most weights to be equal to zero, effectively result-
ing in cue selection) and L2 norm. A regularization path is the value
of a given cue’s weight as a function of regularization strength. A
high regularization strength forces most cues to have zero weight
and, as the regularization strength is relaxed, the weights of the
most diagnostic cues start growing and the classifier starts incor-
porating an increasing number of inputs/cues.

Hence, the earlier a cue is selected, the more important the cue
is to the accuracy of the overall combination (see Fig. 6). Cues
whose weights started to grow early, such as edge-based lumi-
nance with medium-sized filters, performed well in isolation,
resulting in an early selection when strong regularization forced
a small number of cues to participate in the combination.

We used the order of the selection by the elastic net regularized
least square regression (which was stable across training/testing
set splits) to establish a ranking of individual classifiers, which cor-
respond to a cue (e.g., luminance), an approach (either edge- or
region-based), a filter size, and a v2 size (when applicable). Then,
we progressively evaluated the accuracy of the combination (using
the F score as before), starting from the top classifier, then adding
the next best classifier, etc. until adding more did not make the
combination more accurate (see Fig. 7 where each classifier was
color-coded to indicate the cue it pertained to).

As expected from both the aforementioned classifier selection
results and the individual classifier accuracies, intensity, lumi-
nance and color cues accounted for most of the combination’s
accuracy, with motion and stereo cues being amongst the last cues
to contribute to the maximum observed accuracy. Only the top 28
classifiers, including all cues but prominently featuring luminance,
intensity and color cues, were necessary to achieve the peak accu-
racy obtained when training all 63 available classifiers together.
The first cues to be selected by the elastic net regression were quite
correlated; for example, the correlation of the first 5 cues
conditioned on boundary presence was over 0.50; the minimum
correlation value found in this case was 0.32, and the maximum
was 0.91 (p < 0:01 for all of these).

Interestingly, we found no clear relationship between the rela-
tive importance of individual cues for the overall combination
(Fig. 7, lower x-axis), and their accuracy in isolation (Fig. 7, upper
x-axis); e.g., the fourth cue to have been selected was ranked
23rd out of 63 possible classifiers (see Fig. 7).

4.5. Why cue combination is effective

Fig. 8 (top) shows correlation matrices computed between the
probabilities of a boundary being reported by each cue, condi-
tioned on the presence or absence of a boundary in the human
annotations. The detection probabilities were relatively uncorre-
lated close to boundary regions, thanks to an effective use of divi-
sive normalization, and consistent with existing studies on the
statistics of edges in natural scenes (Simoncelli & Schwartz,
1999; Zhou & Mel, 2008). It was still the case when considering
the best classifier (i.e., the best size for the filter and/or the v2 oper-
ator) for each cue, either edge-based or region-based (bottom).
This also suggested another reason why combining cues is
beneficial.

Moreover, between-cue correlations conditioned on the absence
of a boundary (off-boundary conditional) in the annotations were
higher than when conditioned on their presence (on-boundary
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Fig. 5. Ground-truth boundaries (in black) for a representative scene shown in Fig. 1 (first column, second row). Parts of the ground-truth that were recovered by the
corresponding cue are illustrated in blue, with the intensity of the blue color corresponding to the posterior probability of the boundary presence for that cue. This figure only
shows recall; false alarms (boundary predictions from each cue not corresponding to a boundary in the ground-truth) are omitted for clarity.
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conditional). This last result, which is robust even after excluding
the weakest classifier responses, might seem surprising for
classifiers designed to respond strongly to boundaries. One expla-
nation is that they still respond to off-boundary regions weakly
albeit reliably, thus driving up correlation. Note that these classi-
fiers can still be considered fairly accurate under the precision-
recall paradigm, where a high-enough threshold would ensure that
spurious activity is not penalized as false positives. Similar obser-
vations can be made when considering the best performing classi-
fiers for both edge-based and region-based approaches to each cue
(see Fig. 8).

Fig. S4 shows examples of cue cooperation. For example, the
right side of the person on the far left in the considered scene,
which is clearly marked as a valid boundary in the ground-truth,
is not at all detected by luminance or any other cue with the
exception of the region-based approach for single-opponent color.
Another example is the same person’s right shoulder against the
background, which receives roughly the same probability of
being a boundary as background textures in luminance or
double-opponent color. However, among other cues, stereo
(region-based) correctly detects this contour to be a meaningful
boundary, and does not respond against the aforementioned back-
ground. Hence, when all cues are combined, this boundary is
assigned a higher probability of being a boundary than the neigh-
boring background.

We also found that the classifiers trained on double-opponent
color had consistent, vigorous responses to textured, off-
boundary regions in natural scenes, in addition to picking up a sub-
set of the annotated boundaries. As a result, most classifiers corre-
sponding to double-opponent color cues had strong negative
weights when trained in combination with all cues, despite the fact
that double-opponent color was fairly diagnostic in isolation.
Indeed, double-opponent color responded strongly to background
texture edges, as well as object boundaries, at different levels of
activity. When trained in isolation, it does well on its own as a
boundary detector as long as an appropriate threshold is chosen
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Fig. 7. Accuracy of the cue combination vs. number of cues added to the combination (lower x-axis). Cues were added given the ordering of the selection by the elastic net
regularized least squares regression. The area under the accuracy curve is filled with colors indicating the cue being added to the combination (regardless of whether the
approach is edge-based vs. region-based as well as the filter and v2 size). The upper x-axis shows cue ranks when evaluated in isolation (see Fig. S2 for the actual scores),
between 1 (best cue, corresponding to luminance, region-based, filter size of ‘‘small” and v2 size of ‘‘medium”) and 63 (not shown; worst cue, corresponding to stereo, region-
based, filter size of ‘‘large” and v2 size of ‘‘small”).
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in the precision-recall framework: a threshold that is high enough
so as to remove most of the background texture responses (thus
helping precision), but low enough not to start removing actual
boundaries and hurt its recall. However, in combination with other
cues under a logistic model, subtracting the raw, non-thresholded
output of double-opponent color (which is what a negative weight
essentially does) from the rest of the cues lowers the probability
that those background textures be interpreted as object bound-
aries. Effectively, this corresponds to a gating influence of
double-opponent color during boundary detection, signaling spuri-
ous boundaries corresponding not to real boundaries but to tex-
tured regions with strong oriented content (see Fig. S4, where
even the best classifier based on double-opponent color has a
strong response to background textures).
5. Discussion

The aim of this study was to gain a deeper understanding of the
image information available from individual early visual cues and
their combination to support the detection of boundaries. We have
thus implemented an integrated model of early visual processes in
multiple visual cues from luminance to color, motion and binocular
disparity. To assess the diagnosticity of these early visual cues, we
collected color binocular video sequences of natural scenes to con-
struct a video database with a set of higher-level object boundary
annotations as well as lower-level edge annotations. We used the
dataset and annotations to train and test machine-learning classi-
fiers on these various visual channels for the detection of object
boundaries in natural scenes.
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In particular,we considered these early visual cues in the context
of an edge-based approach where a population of orientation- and
frequency-tuned filters selective for particular cues are used as
direct inputs to a classifier trained to detect the presence or absence
of a boundary. In a sense, the output of the filters is directly inter-
preted as reflecting the presence/absence of a boundary under the
assumption that the best-responding filter should line up with the
boundary to be detected. We also considered a region-based
approach, which uses the population of orientation and frequency
tuned filters to build a visual representation of intermediate com-
plexity based on visual textons learned from images. In this
second-order approach, boundaries are detected when two neigh-
boring regions of the image are composed of different textures cor-
responding to different distributions of texton elements.

Our results confirmed that, for all cues considered, the region-
based approach outperforms the edge-based approach for the
detection of boundaries. Indeed, this result had already been
shown in Martin et al. (2004) for the luminance cue and was
expected because, in challenging natural scenes, textured object
surfaces contain rich oriented structures which are likely to create
numerous spurious detections when used as a direct measurement
for the presence or absence of an edge.
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Furthermore, a systematic comparison between the accuracies
of individual cues suggested that luminance and color are much
stronger cues than either motion or disparity. However, we also
found that the optimal combination of all available cues yielded
a classifier that fared significantly better than any cue in isolation.
Previous work has shown that when luminance and chromatic
contrasts are available, observers perform better than when either
cues are presented in isolation (Frome et al., 1981; Rivest &
Cavanagh, 1996). Our study thus adds to a growing body of litera-
ture providing a computational-level explanation for the observed
improvement in accuracy when cues are combined.

In particular, we found an overall weak correlation between
cues, especially at boundary locations. This result is consistent
with an earlier study that looked at the statistics of luminance
and chromatic edges in natural scenes and found chromatic infor-
mation to be relatively non-redundant with luminance informa-
tion (but see Fine et al., 2003; Zhou & Mel, 2008 for conflicting
results). However, even though disparity and motion were among
the least correlated with other cues, they only accounted for a (dis-
appointingly) small increase in accuracy when included in combi-
nation with other cues. On the other hand, luminance, color, and
intensity both accounted for a large portion of the accuracy in
the optimal cue combination, and were selected early with respect
to the regularization path analysis.

There are several limitations associated with our study. First, an
inherent limitation in nearly every study of natural scene statistics
is the absence of cue-specific ground-truth data. An alternative to
this natural scene approach would be to rely on artificial stimuli
that would enable the isolation of individual cues as in, for
instance, moving random dot stimuli used in motion studies
(Thompson, 1998). Here, instead, annotators were given ample
time to scan images, zoom in and out, etc. under the assumption
that, under these conditions, human annotators constitute a
‘‘golden standard” against which individual cues (motion, dispar-
ity, color, luminance) can be tested.

A major pitfall of our study is that the contribution of motion
and stereo cues to overall boundary detection performance was
disappointingly low, even when considering different metrics
(individual F scores, importance in cue selection, etc.). Upon further
inquiry, whereas, e.g., color cues picked up on boundaries separat-
ing surfaces defined by different colors (e.g., an animal’s fur against
a green background composed of leaves), motion cues were not as
robust at picking up on boundaries between surfaces of different
velocities, and binocular disparity cues on boundaries between
surfaces placed at different depths. This comes as a surprise as
there is an extensive literature suggesting that both motion and
depth cues can be leveraged for boundary detection. But we have
limited ourselves to early visual processing models of motion
and stereo that include only one level of linear-nonlinear process-
ing, resulting in populations of model V1 cells tuned to spatio-
temporal frequency and absolute binocular disparity, respectively.
Our results do not rule out motion and stereo as ineffective for
boundary detection; but to successfully exploit them, models of
higher-level processing may be required (such as an MT-level
model of velocity tuning for motion, or a V2-level model of relative
disparity tuning for stereo) that would possibly cascade several
levels of linear-nonlinear processing.2

Indeed, it is known that individual V1 neuronal responses are
ambiguous. For instance, direction-selective neurons suffer from
2 From an engineering perspective, another venue to improve the performance of
stereo and motion could be to ensure that the associated textons truly capture
different depths and velocities, respectively, either by using a supervised method (e.g.,
by decoding depth and speed) or keeping an unsupervised method like we did but
also helping it by balancing the dataset with respect to the distribution of depths and
speeds of the different surfaces represented in the dataset.
the aperture problem (Bradley & Goyal, 2008) and disparity-
tuned cells respond to false binocular matches (Parker, 2007) while
neurons in higher level areas of the ventral and dorsal streams
have largely solved these problems (Orban, 2008). Encouraging
preliminary results were obtained with an extension of the motion
processing model that is selective for velocity as opposed to spatio-
temporal frequency only. This model groups surfaces moving at the
same velocity and provided a small but significant improvement in
accuracy. More generally, future work should assess the accuracy
of hierarchical models of the visual cortex (see Mély & Serre,
2016 for a review) or their cousins, deep learning architectures
(LeCun, Bengio, & Hinton, 2015), which incorporate multiple
processing stages.

Another concern that limits the scope of the present study has
to do with the way classifiers were trained. The benchmarking pro-
cess that produced the F measure matches boundaries detected by
the classifiers to those manually annotated while allowing for
some slack in their precise localization (Martin et al., 2004) (to pro-
vide some robustness to small imprecisions in the labeling pro-
cess). However, we did not allow for such slack during training
because it would have yielded a prohibitively long training time.
This might have penalized the resulting classifiers and it is possible
that allowing for such slack during training would have yielded
higher accuracies for both individual cues and their combinations.
There is, however, no particular reason to expect that this would
have affected some cues more than others and we thus expect that
the resulting cue rankings would remain unchanged.

It is also possible that performance could be improved by con-
sidering more sophisticated classifiers and/or combination rules.
The logistic classifier used here only affords a simple form of coop-
eration by linearly combining multiple outputs across cues. More
sophisticated (non-linear) combination rules including random
forests and other decision trees would theoretically be able to learn
more complex interactions between cues.

Overall, we hope that the systematic assessment of the accuracy
of early vision models for boundary detection, together with the
resulting annotated video dataset, will provide a useful benchmark
to gauge, progress in the development of higher-level vision
models.
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