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Abstract—Advances in two-photon calcium (Ca2+) imaging
technologies are rapidly increasing the fidelity and scale of in-vivo
neural recordings from behaving animals. These methodologies
hold great promises for uncovering the neural computations
that support behavior. One remaining challenge is the need to
estimate the timing of action potentials (APs) from measured
cellular Ca2+ traces revealed by genetically encoded calcium
indicators. Current approaches rely on manually pre-processing
Ca2+ imaging data, with routines for cell segmentation and signal
normalization preceding deconvolution. Here, we show that by
leveraging recent advances in recurrent neural networks it is
possible to learn to detect APs end-to-end directly from raw
Ca2+ recordings. Our novel model achieves state-of-the-art per-
formance on this task. We further demonstrate that the relative
success of the approach is based in part on the system’s ability to
learn spatio-temporal features that are typically associated with
biophysical events known to contribute to the AP process.

Index Terms—calcium imaging, spike prediction, convolutional
networks, recurrent networks

I. INTRODUCTION

Calcium (Ca2+) imaging techniques hold the promise to
transform neuroscience by allowing large-scale recording of
neural activity deep within the nervous system. Intracellular
Ca2+ concentration is highly dynamic and the rapid changes
in membrane potentials that lead to action potentials (APs)
are typically accompanied with brief and transient changes in
cytosolic Ca2+. Thus, Ca2+ concentrations constitute a prime
signal for tracking neuronal activity.

The development of fluorescent dyes and buffers that fluo-
resce when bound to Ca2+ [17] has led to the creation of a
diverse array of Ca2+ indicators. These indicators vary in their
capacity to accurately signal Ca2+ levels within the cell [2]. In
contrast to dyes, which must be loaded into the cell body and
fade over time, genetically encoded Ca2+ indicators (GECIs)
allow the genetic targeting of neurons of interest, they are less
invasive, and can provide stable signal throughout the life of
the neuron, allowing for precise monitoring and dissection of
neuronal circuits [12], [14]. The compatibility of GECIs with
two-photon microscopy has also enabled Ca2+ imaging deep
within brain tissues at subcellular resolution, even in awake
behaving animals [3]. However, there is currently no gold
standard method for inferring or deconvolving neural activity
(in the form of APs) from Ca2+ signals, even for popular
GECIs such as the GCaMP variants [16].
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Fig. 1. We describe a learning approach for inferring APs from Ca2+ imaging
data. Typical approaches begin with a series of heuristic preprocessing steps
which include 1) segmenting the neuron by hand or with imprecise algorithms
and taking the average intensity across its cytosol (red ring; middle panel), 2)
measuring surrounding neuropil activity and correcting for it in the neuron’s
activity trace (yellow ring; middle panel), and 3) normalizing the signal
across time to �f/f0. The resulting processed GCaMP6 trace is used for
AP deconvolution. In contrast, our approach removes the entire preprocessing
stage and operates directly on raw unprocessed GCaMP6 images.

A variety of biological nuisances and technical difficulties
make AP detection in GCaMP signal difficult: (i) Ca2+
kinetics and indicator responses are slower than APs [3]; (ii)
Subthreshold Ca2+ events are not correlated with APs, yet
are picked by indicators [7]; (iii) GCaMP is not spatially or
temporally standardized (ı.e. expression varies across the cell
body and the basal intensity varies across time), impeding any
comparison between intra- and inter-cellular signal changes
and how they relate to APs [13].

The typical approach to AP deconvolution tries to com-
pensate for GCaMP imaging deficiencies and the indirect
relationship between Ca2+ and APs with a series of prepro-
cessing steps (Fig. 1). Broadly, these steps convert raw GCaMP
images into a spatially and temporally normalized activity
“trace” from which APs can be more readily inferred (“Typical
approach” in Fig. 1). Preprocessing steps include segmenting
the cell body from the background, averaging the recorded
intracellular Ca2+ signal, correcting for contaminating sig-
nals from surrounding neuropil, and normalizing the trace to
basal fluorescence across time. To overcome these nuisances,
hand-tuning each preprocessing step is critical for existing
deconvolution algorithms to succeed. Current methods also
suffer because averaging GCaMP intensities across the cell
yields a very noisy signal for predicting APs (due to cellular
mechanisms unrelated to APs which are also associated with
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the release of Ca2+ and hence distort the average [11].)
Here, we describe a novel approach which leverages re-

cent end-to-end learning methods and alleviates many of
the aforementioned limitations. We take advantage of recent
developments in recurrent neural network architectures to
make the following contributions: (1) We describe novel
model architectures based on gated recurrent units (GRUs) [4]
that deconvolve APs from raw or minimally processed Ca2+
imaging data. (2) We demonstrate that GRUs trained directly
on raw imaging data outperform the state-of-the-art [16]. (3)
By visualizing spatio-temporal features used by the GRUs to
deconvolve APs from Ca2+ imaging data, we confirm that the
neural networks successfully learn a meaningful association
between APs and changes in cytosolic Ca2+ signals.

II. DATASET

Experiments were performed on an open source 2-photon
Ca2+ imaging dataset [3], [6]. The dataset contains simulta-
neous imaging of GCaMP6s indicator combined with intra-
cellular electrophysiology, which serves as a ground truth
for learning the relationship between GCaMP signals and
APs. The dataset contains 9 recording sessions total derived
from 4 neurons in layer 2/3 of the primary visual cortex in
anesthetized mice. Ca2+ recordings were sampled at 60Hz in
a 30 ⇥ 30 µm2 (256 ⇥ 256 pixel) field of view. Electrophysi-
ological recordings were made at 60kHz, thresholded for APs,
and then resampled at 60Hz.

We manually inspected the GCaMP6 images and found that
all images from one of the neurons as well as those from
a late recording session in a second neuron were visually
different compared to the others. Abnormalities in these im-
ages included an anomalous cell morphology and an atypical
distribution of GCaMP across the cell consistent with cell
death. For these reasons, we excluded these sessions from
our analyses. In total, we kept 7/9 available recordings in the
dataset, which spanned 3 different neurons.

This dataset was split into disjoint video segments used
for training and testing. The first 80% of the video recording
was used for training and final 20% was used for testing. For
the training set, 166-ms sequences of images (10 consecutive
frames) were sampled with no overlap. We first converted
the AP counts across each sequence to a binary indicator
(“1” if an AP occurred during a sequence, “0” otherwise).
APs occurred in approximately 5% of the sequences, so we
oversampled these until they were close in proportion to those
with No AP [1]. This procedure expanded the size of the
training set from 8,064 to 15,386 sequences. For the test set,
we increased the total number of sequences by sampling every
33ms (causing significant overlap between test sequences),
which yielded 10,076 test sequences. This provided a more
difficult and robust test of AP deconvolution.

We created three different preparations of the training and
test splits of data, each of which was designed for a specific
model described in detail below and referred to as dataset A,
B, and C. (A) Raw GCaMP image sequences, which were
normalized by subtracting the scalar mean activity across
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Fig. 2. We developed a recurrent convolutional neural network (2d GRU) for
end-to-end learning of AP deconvolution from Ca2+ imaging data. The model
consists of three layers of computations to map GCaMP image sequences
to APs. First, a convolutional gated recurrent unit (GRU) with feedforward
filters extracts visual features from images in the sequence. Temporal filters
and gates accumulate GCaMP signals across images that are diagnostic for
AP deconvolution. The final “temporal activity” captures information present
throughout the image sequence, and is passed through another convolutional
filtering layer that extracts more complex visual features (far right). Finally,
a fully connected readout layer learns to predict whether an AP occurred
during the image sequence. Colored squares denote convolutional filters, and
translucent gray squares denote feature maps. Red corresponds to spatial
convolution, blue to time convolutions, orange and purple to recurrent gate
convolutions. The readout layer is not shown.

all training sequences; (B) neuropil-corrected traces of Ca2+
activity taken from the segmented cell body provided by [3]
and (C) an additional version of (B) with activity normalized
to basal fluorescence across time. This temporal normalization
was implemented as standard �f/f0 given by:

�f/f0 = (f
t

� f0)/f0 (1)

where f

t

denotes the preprocessed activity value at time t, and
f0 denotes the mean activity across the preceding 1 second of
recordings (60 frames). In words, �f/f0 normalizes activity
at time t with the running mean f0.

III. PROPOSED MODELS

It is typically assumed that successful AP deconvolution
from Ca2+ imaging data requires (i) knowledge of the rela-
tionship between neuronal Ca2+ dynamics and APs as well as
(ii) an explicit model of the measurement noise that plagues
Ca2+ imaging data. This challenge is usually met with several
manual preprocessing steps before deconvolving APs from
imaging data. We hypothesized that recent developments in
recurrent neural networks could yield an alternative end-to-
end learning solution – bypassing the need for any manual
intervention.

A. GRU Model

We introduce the 2d gated recurrent unit (2d GRU), an
architecture that pairs spatial convolutional feature extraction
with a recurrent temporal memory with the goal of learning
complex and long-range spatio-temporal dependencies. The



proposed 2d GRU comprises a 3-layer hierarchy (Fig. 2): 1)
a convolutional GRU, 2) a convolutional layer, and 3) a fully
connected readout layer. The model receives a sequence of
GCaMP6 images x

s

(t) = (x
t�t0 , . . . , xt

) as input, where t

represents the endpoint of the sequence. This sequence, taken
from dataset A, is mapped onto an indicator variable y

s

which
encodes whether it coincided with an AP. All models were
trained and tested on 166-ms long sequences (10 consecutive
frames, so t0 = 9).

The model’s convolutional GRU layer modifies a typical
gated recurrent unit [4] with convolutional operations. Its
dynamics are governed by the following equations:
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t

denote a reset gate activity, an
update gate activity, a temporal “hidden state” activity, a
candidate temporal hidden state activity, and an input GCaMP
video frame at time t, respectively (this will be a single frame
from an x

s

(t) sequence.) These activities are derived from
convolutions between an input frame x

t

with the kernels W⇤
and h

t�1 or the hidden state activity h

t

with the kernels
U⇤. Kernels W

x

and U

h

are of size 11 ⇥ 11 ⇥ 1 ⇥ 96 as
in height ⇥ width ⇥ number of input channels ⇥ number
of filters used to compute the spatial and temporal recurrent
hidden state activity. Lastly, b

r

, b

z

, and b

x

are bias terms. This
architecture is depicted in Fig. 2, with W⇤ signifying spatial
filters, U⇤ temporal filters, and h⇤ temporal activities. Element-
wise multiplication is signified by �.

To reduce the number of parameters in the model, we
used separable convolutions to compute all gate activities
(approximating a full-convolution kernel with separate spatial
and channel filters.) This approach significantly cuts down on
parameters, which we found critical for successful training.
W

d

i

and U

d

j

are spatial filters and W

p

i

and U

p

j

are channel
filters. Spatial filters are of size 3 ⇥ 3 ⇥ 1 ⇥ 1 and channel
filters are of size 1⇥ 1⇥ 1⇥ f . To facilitate training, we also
initialized W

x

with weights from the first layer of the popular
AlexNet [9].

Nonlinearities in the convolutional layers are incorporated
to help the GRU learn complex spatial and temporal regular-
ities. The nonlinear function �(·) is an element-wise sigmoid
function used to calculate r

t

and z

t

. This effectively transforms
unit activities into gates which zero out irrelevant information
from the hidden state activity at the previous time step (the
reset gate, r

t

), and help gate elements of the hidden states
which should be preserved across time (the update gate, z

t

).
The nonlinear function ⇣(·) rectifies the updated hidden state
with a scaled exponential linear unit [8] (SeLU), which drives
activities towards zero mean and unit variance and which
we found to improve model training. The final hidden state
activity of the convolutional GRU is fed to an additional

convolutional layer with kernel size 3 ⇥ 3 ⇥ 96 ⇥ 128 (far
right of Fig. 2). A SeLU is also applied to these activities.

The 2d GRU is trained by adding one or multiple fully
connected layers to its final convolutional layers to yield
an output binary classification label (AP vs. No AP) for a
sequence of GCaMP6 images xs(t). We experiment with two
different loss functions for training the model end-to-end. The
first version of the model was trained for binary classification
(AP vs. No AP). A single fully connected layer was used
in this model, and we minimized the binary cross-entropy
between its output prediction ỹ

s

and the ground truth y

s

. We
refer to this as the “single loss” version.

For the second version of the model, we tested whether a la-
tent representation of the Ca2+ kinetics specific to each neuron
in our dataset could improve AP deconvolution performance.
This was implemented by training a 2d GRU with two distinct
fully connected layers: one for detecting APs across xs(t)
as in the single loss model, and another for identifying the
neuron pictured in xs(t). Because there were three neurons
in this dataset, this second loss was the categorical cross-
entropy between the predicted neuron identity ỹ

sid

and the
actual identity y

sid

. This second version of the model (“dual
loss”) was trained by minimizing the combination of these
two losses. The assumption behind this loss is that forcing
the network to recognize the different cells may force it to
learn implicit associations between cell morphology and AP
detection.

We compared the 2d GRU to an architecture that was trained
on 1d activity traces from dataset B. This model, which we
refer to as the 1d GRU, uses the same sequence of operations
as the 2d GRU but modified for 1d data. It consists of a GRU
followed by a 1d convolution kernel of width 3 and finally
one or multiple fully connected layers. Separate versions of
the 1d GRU were trained with single and dual losses.

Both the 1d and 2d GRU models were trained with Tensor-
flow and the Nadam optimizer [5] (which augments the popu-
lar Adam optimizer with Nesterov momentum). Model training
continued until the Nadam optimizer converged, which took
approximately 100 epochs. The 2d GRU was trained on images
that were resized with area interpolation to 192⇥192. Images
were then augmented with random crops to 164 ⇥ 164 and
random left/right and up/down flips. Image augmentation is
critical for training, and we anticipate that more aggressive
routines could improve performance beyond what we report.

Since the 2d GRU had significantly more model parameters
than the 1d GRU, we attempted to increase the fairness of
the comparison between the two models by optimizing over
1d GRU models. This procedure, which was repeated for both
single and dual loss versions of the 1d GRU, involved selecting
the top-performing 1d GRU across 20 different configurations
and 4 learning rates. This procedure was not repeated for the
2d GRU since it took significantly longer to train. Although
our model optimization procedure is favorable to the 1d GRU,
we still find a clear advantage for the 2d GRU over it in AP
deconvolution (see Results).



Fig. 3. End-to-end deconvolution on unprocessed GCaMP6 images out-
performs typical approaches. Our novel 2d GRU achieves better average
precision (µP) than both a benchmark Spike Triggered Mixture (STM) model
for deconvolution [16] and a similar GRU architecture trained on activity
traces instead of images (“1d GRU”). The 2d models were trained on raw
Ca2+ imaging data. Of the remaining models, most were trained on neuropil-
corrected activity traces, with the exception of the STM �f/f0, which was
trained on temporally normalized versions of the corrected traces. Precision
is the ratio of true positives to all positive decisions. Recall is the ratio of
true positives detections to total positive APs. µP is a weighted mean of
precisions achieved across the depicted thresholds. Hexagons mark the point
on each curve closest to the top-right hand corner, which is the optimal trade-
off between precision and recall.

B. Benchmark model

We used the spike-triggered mixture (STM) model for spike
inference [16] as our baseline. The approach was shown to
outperform other representative approaches, which included
simple deconvolution as well as generative and discriminative
approaches. Since our task was to detect the occurrence of an
AP given a series of GCaMP6 images, and not to estimate the
firing rate per se, we used a logistic non-linearity instead of
an exponential one as done in the original study. The model
assumes Bernoulli distributed APs given by the following
equation:
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(t) is a vector of preprocessed flourescence values
obtained by averaging over each of the frames in the image
sequence x

s

(t). w
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quadratic features learned with supervision from training data.
The quadratic feature term ensures that the model is expressive
enough to learn complex non-linear relationships between
calcium traces and spikes.
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Fig. 4. Statistical comparison of model µP scores for AP deconvolution
from Ca2+ activity. Cells are color coded to denote p-values derived from
randomization tests that measured the likelihood that the performance of a
model on a given row is superior to that of a model on a given column. The
2d GRU single loss model, outlined in blue, recorded a significantly higher
µP score than any other model. *: p <0.05; **: p <0.01; ***: p <0.001.

We used the same data preprocessing and hyper parameters
as [16]. For increased robustness against potential local
minima, we trained 5 different STM models and used the
mode of their predictions for evaluation. Separate STMs were
trained on datasets B and C. We validated this modified STM
by training it on the same datasets as [16], for which we found
comparable AP deconvolution performance (⇢ = 0.49) to what
was reported in the paper [16] (⇢ = 0.45 to ⇢ = 0.55).

IV. EVALUATION

A. Prediction accuracy

Fig. 3 shows precision-recall curves obtained for the dif-
ferent models for AP deconvolution. These curves show the
trade-off between correctly detecting APs vs. detecting all APs
in the dataset as the decision threshold is varied. An optimally
performing model will have a curve approaching the top-right
hand corner of the axes. The point on each curve closest to the
top-right hand corner is marked with a hexagon. The markers
show that the 2d GRU single loss model (light blue) is closest
to this benchmark. These curves also demonstrate that the the
2d GRUs outperform all other models at nearly all precision
and recall thresholds except when recall is high, where the 1d
GRUs outperform all other models.

We also summarized performance of the models as average
precision (commonly known as AP, but referred to as µP here
to avoid confusion with the abbreviation used for action poten-
tials), which is a popular metric to evaluate computer vision
systems (see e.g. [10]). We compared model performance in
µP by entering these scores into randomization tests, which
measured the probability of the difference in µP between any
two models occurring due to chance. Briefly, this procedure
involved first measuring the true difference in µP between any
two models. Next, for each pair of predictions made by the two
models, we randomly swapped the identities of their groups
(having been produced by the STM vs. the 2d GRU) and
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Fig. 5. The 2d GRU learns to associate calcium transients in the cytosol with APs. Calculating the gradient of activity in the 2d GRU decision layer for AP
vs. No AP decisions with respect to GCaMP6 images yields maps that explain model decisions. Separately visualizing positive gradients from the negative
gradients identifies pixels that positively (red overlay) and negatively (purple overlay) contribute to the model’s decisions for AP vs. No AP. Each panel
depicts the mean GCaMP6 activity over different 166-ms sequences. The model identifies APs based on calcium transients in the cytosol over time, and in
the process ignores background activity. When the model predicts No AP, it coincides with roughly uniform dispersion of gradient across the image with a
notable absence of relevant signals in the cytosol. Colorbars on the right depict the range of gradient image values. Note that gradient images for sequences
where an AP was detected are orders of magnitude larger than those where an AP was not detected, suggesting that the model made its decisions based on
the amount of accumulated visual evidence for APs over time.

recorded the new difference in µP scores between them. This
process was repeated 1,000 times to build a null distribution
of µP differences between the models, and a p value was
calculated as the proportion of randomized µP differences that
exceeded the true difference.

This analysis revealed that the 2d GRU was significantly
better at AP detection than any other model tested, including
the baseline STM (4). Note that the STM only performed well
when trained on pre-processed �f/f0 signals as opposed to
raw traces as done with the 1d GRU. Indeed, the 1d GRU
performs similarly on raw traces to how the STM model
performed on pre-processed �f/f0 traces. This suggests that
recurrent neural network models are capable of learning an
appropriate normalization across time for AP deconvolution.
This is one major benefit of the end-to-end learning approach
as it circumvents the need to specify a temporal window by
hand for computing �f/f0.

B. Diagnostic features
What are the visual features present in Ca2+ image se-

quences that the 2d GRU model uses to predict APs? One
approach that tries to identify the visual features that drive
neural network decisions is based on the computation of

gradient images [15] which highlight individual pixel locations
that influence model decisions. For our purpose, the procedure
involved calculating the gradient of model decisions with
respect to sequences of GCaMP6 images. We split sequences
of gradient images into separate positive and negative gradient
value volumes, which identified pixels based on their positive
or negative contributions to the model’s decisions. Averaging
across the multiple frames in each volume yielded heatmaps
of positive and negative spatiotemporal feature importance.

Gradient images derived from the 2d GRU show that the
model learned to focus on biologically meaningful visual
features for AP deconvolution (Fig. IV-A): AP decisions
seem to be associated with localized changes in cytosolic
Ca2+, while No-AP decisions are associated with gradients
distributed nearly uniformly across the entire frame. In other
words, significant cytosolic events trigger the detection of
AP events while the absence of cytosolic events trigger No-
AP event predictions. This demonstrates a key benefit of an
end-to-end learning approach: the model learns how to focus
on calcium transients to make its decision without manual
preprocessing.



V. DISCUSSION

We showed that end-to-end learning of AP deconvolution
from Ca2+ imaging data is possible. This raises the exciting
possibility that the set of manual heuristics developed for
pre-processing Ca2+ imaging data may be learned entirely
from data – bypassing the need for human intervention in the
AP deconvolution pipeline. Time and time again, end-to-end
learning with neural networks has proven capable of removing
humans from the loop in various computer vision tasks.

We found that our novel 2d GRU trained to predict APs
learns to base its decisions on meaningful regions in neurons,
focusing on cytosolic Ca2+ transients. Our novel 2d GRU also
exemplifies a toolbox of computations needed for this task:
convolutional filters for extracting relevant spatial features and
a memory (hidden state) for accumulating relevant signals
possibly distributed across the cell body across time. More
work is needed to optimize this model and answer many of
the questions we could not answer because of a lack of data.
For instance, training the model on longer image sequences
could improve its deconvolution by exposing it to temporal
dependencies in neuronal function that are more difficult to
learn over the 166-ms image sequences used here.

Most importantly, the dataset used in the present study
pales in size and variety compared to standard datasets used
in modern computer vision and natural language processing
benchmarks. While the described 2d GRU outperforms the
state-of-the-art, it is clear that the model is underfitting. This
is likely due to both the small number of unique image
sequences for training, and the small proportion of these
sequences in which an AP occurred. The latter limitation
motivated us to train these models on AP detection across
a brief image sequence rather than the more data intensive
and functionally informative task of predicting the timing
of APs. We also suspect that exposing the model to more
neurons than the three tested here could facilitate our dual
loss training routine, which gives the model an implicit signal
for Ca2+ kinetics that are specific to different types of neurons.
Given how computer vision has benefited from a emphasis on
increasing dataset size, we expect that larger and more varied
Ca2+ imaging datasets will significantly improve end-to-end
learning for AP deconvolution and provide greater flexibility
in task specification, especially for the neural networks we
employ here (versus other methods like our STM baseline).

Rapid advancements in the design of better DCN architec-
tures and training routines have bolstered the development of
computer vision systems that can learn directly from images
to solve visual tasks. We demonstrate that this approach can
be readily applied to the unsolved task of deconvolving APs
from Ca2+ imaging, outperforming the standard approach and
positioning end-to-end learning as a potential way forward.
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