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Visual categorization refers to our ability to organize objects and visual scenes
into discrete categories. It is an essential skill as it allows us to distinguish friend
from foe or edible versus poisonous food. Understanding how the visual system
categorizes objects and scenes is a challenge because it requires bridging the gap
between different levels of understanding–from the level of neural circuits and
neural networks to the level of information processing and, ultimately, behavior.
Computational models have become powerful tools for integrating knowledge
across these levels of analysis. We review recent progress in our understanding
of the computational mechanisms underlying visual categorization and discuss
some of the remaining challenges. © 2016 Wiley Periodicals, Inc.

How to cite this article:
WIREs Cogn Sci 2016, 7:197–213. doi: 10.1002/wcs.1385

INTRODUCTION

Categorization is arguably one of the most critical
tasks that must be solved by our visual system:

It is essential to survival because it allows an animal
to make inferences regarding an object’s properties
by generalizing from other category members.1

Human and nonhuman primates excel at visual cate-
gorization tasks and can reliably categorize objects
embedded in complex natural visual scenes with only
a glimpse (see Refs 2,3 for recent reviews).

Formally, visual categorization is the process by
which a set of visual stimuli xi get associated with
class labels yi to form (xi, yi) exemplar-label pairs
(Figure 1). It requires learning a decision function
f that best represents the mapping between the inputs
and the corresponding outputs f(xi) ≈ yi.

Work in biological and machine vision has tra-
ditionally focused on the study of perceptual repre-
sentations: How does the visual system extract
diagnostic visual features to build robust visual repre-
sentations xi that are tolerant with respect to the
many factors that affect the appearance of natural
object categories? Work in cognitive psychology, on
the other hand, has focused on the mechanisms
underlying the categorization process, i.e. what is the

nature of the space of decision functions f and how
are these decision functions learned from training
examples?

Historically, perceptual representations and cat-
egorization processes have been studied with little
overlap.4,5 Understanding visual categorization will
necessarily require bringing together multiple disci-
plines from computer vision and machine learning to
cognitive psychology and systems neuroscience. The
goal of this review is thus to integrate key pieces of
the literature from relevant disciplines and to provide
an overview of the current state of the field.

In the following, we start with a brief descrip-
tion of the organization of the visual cortex and
review the neural basis of visual categorization. We
then survey existing computational models of visual
perception—highlighting recent developments in
(deep) learning of visual representations. We proceed
with an overview of formal models of categorization
from the perspective of computational learning the-
ory and cognitive psychology. We conclude with
open questions and highlight promising future direc-
tions for research.

THE NEURAL BASIS OF
VISUAL CATEGORIZATION

Visual perception is a dynamic process, which starts
with a coarse initial analysis of a scene that gets con-
tinuously refined to reflect the infinite amount of
details present in natural scenes6: ‘The more you
look, the more you see.’ A large body of literature
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suggests that an initial coarse visual analysis relies on
the extraction of relatively simple visual features via
feature detectors that operate very rapidly and in
parallel across the entire visual field.7 Experiments
using artificial search arrays of stimuli have demon-
strated that simple image features can be processed
pre-attentively and in parallel while more complex
feature combinations require a serial attentional
process.8

Our visual system appears to be surprisingly
well adapted to our natural environment. Studies
conducted using natural visual scenes have demon-
strated the incredible speed and accuracy of the vis-
ual system for some of the most challenging visual
recognition tasks (such as animal vs. non-animal cat-
egorization) in the near absence of attention9 (see Ref
2 for review).

The underlying visual representation remains
limited to relatively coarse shape information as
human observers frequently fail to localize targets
(the where task) that they had correctly detected10

(the what task). Such results seem inconsistent with
vision theories that rely on explicit encoding of spa-
tial relationships between features11 and suggest

instead that rapid visual categorization may rely on a
dictionary of unbound visual features.12,13 However,
this leaves open the question of where these visual
features are computed.

Visual processing consists of a series of neurally
interconnected stages (Figure 2), starting at the level
of the retina, and proceeding through the Lateral
Geniculate Nucleus (LGN) of the thalamus to the pri-
mary visual cortex (V1). The primary visual cortex,
in turn, projects to extra-striate visual areas along
the ventral stream of the visual cortex from area V2
and V4 to the inferotemporal cortex (ITC).16,17 The
ITC constitutes the final stage between visual cor-
tices, on the one hand, and the limbic systems and
frontal areas,18 on the other hand, effectively linking
perception to memory and action.

The notion of a visual hierarchy began with the
groundbreaking work of Hubel and Wiesel in the
striate cortex (see Ref 19 for review), who first sug-
gested how tuning for orientation and tolerance to
small shifts in position in V1 could originate from a
hierarchy of selective pooling mechanisms. It is now
relatively well established that these types of hierar-
chical pooling mechanisms extend beyond V1 to the
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FIGURE 1 | Computational models of visual categorization. Visual categorization has traditionally been described as a two-stage process:
(a) Visual features must be computed to build a visual representation of an input stimulus xi. It is desirable for the representation to be both
tolerant to the many factors that can affect the appearance of an object and also selective enough to capture subtle differences between
exemplars across the category boundary. Different computational models of feature computation vary in their degree of invariance and specificity.
For illustration purposes, two features x ki are being computed (superscripts are used as feature indexes and subscripts as stimulus indexes) but
more generally, the total number of features N used to represent visual stimuli can be quite large (N ≈ 102 − 104). More generally, visual stimuli
can be thought of as N-dimensional feature vectors (also called data points) xi = x1i ,…, x ki ,…, x Ni

� �
in this representational space whereby the kth

coordinate of xi corresponds to the response of the kth feature detector x ki . (b) A categorization process associates these data points xi to category
labels yi through a learned function f such that f(xi) ≈ yi. Here, we consider a binary classification task with a positive (target) and a negative
(distractor) category label (yi = {−1, 1}). Shown in red is a linear classification function f that separates the positive and negative examples. This
function is parametrized by the vector w = (w1, w2), which is the vector normal to the underlying decision boundary. In practice, these functions
are learned from training examples. For instance, supervised learning algorithms learn this mapping from the presentation of (xi, yi) exemplar-label
pairs. After learning, the algorithm tries to predict the category label of a new stimulus x* by considering whether the stimulus projected in the
feature space falls on the right or left side of the boundary. This can be done by computing the dot-product between the input stimulus and the

normal vector and subtracting off a fixed threshold θ: f x*ð Þ= sign w�x*−θð Þ= sign
X

k
w kx k* −θ

� �
.
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entire ventral stream:16,17 At each stage of the pro-
cessing hierarchy, the underlying visual representa-
tion becomes increasingly complex with cells
becoming selective to increasingly more stimulus
dimensions – from single orientations to image frag-
ments and object views in higher visual areas. At the
same time, the underlying visual representation
becomes gradually more tolerant to image transfor-
mations (mainly changes in position and scale).

Converging evidence suggests that the ventral
stream of the visual cortex plays a key role in the
encoding of object categories.16,17,20 For instance,
category information has been found in V421 and
entire clusters of ITC neurons are selectively tuned to
ecologically important categories of stimuli such as
faces and body parts22 as well as objects of expertise
in humans.23 Interestingly, semantic information
encoded in the human homologue of the ITC is
remarkably similar to that found in monkeys.24,25

Several studies have also reported that natural object
categories can be read out from ventral stream neural
activity.26–28 Furthermore, category learning intro-
duces local changes in the ITC29 (see also Ref 30) as
well as distributed effects throughout the ventral
stream of the visual cortex (see Ref 31 for review).

Whether the ventral stream is directly involved
in the categorization process per se, as opposed to
building a robust visual representation, remains,
however, a matter of debate. For instance, it has been
shown that ITC neurons often do not completely

generalize among category members and remain
selective for the perceptual similarity between indivi-
duals.20 Category signals in the prefrontal cortex
(PFC), one of the main projections of the ITC, tend
to be stronger with shorter latencies compared to
ITC.20 The category information found in the ITC
could thus reflect top-down signals32 from the PFC
(but see also Refs 33,34) or other memory-related
areas.

Outside the ventral stream, category selectivity
has also been reported in the lateral intra-parietal
(LIP)20 as well as the hippocampus, amygdala and
entorhinal cortex.35 Selectivity for threatening stimuli
(snakes) has been observed in the pulvinar within
≈50 ms post-stimulus onset.36 Selectivity for animate
object categories has been demonstrated in the
human amygdala.37 This has lead some researchers
to argue for the possibility of a ‘low-road’ subcortical
pathway for visual recognition that would bypass the
aforementioned ‘high-road’ ventral stream cortical
pathway (see Ref 38 for a review). However, the
observed latencies are relatively slow (>300 ms) com-
pared to the fastest reaction times observed during
rapid categorization tasks2 (<300 ms). In compari-
son, object category information can be decoded
from the ventral stream of the visual cortex much
faster (within ≈100 ms post stimulus onset) in both
humans39 and monkeys.26,27

A very recent study28 has shown that category
signals in the ventral stream of the visual cortex co-
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FIGURE 2 | The neural basis of visual categorization. Shown are areas involved in visual categorization. Areas involved in the computation of
visual features are shown in red and areas involved in categorization in cyan. Some subcortical areas known to play a role in categorization are
not shown including the striatum.14 (Adapted from Ref 15)
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vary with monkey behavioral responses during a
rapid categorization task, offering a more direct evi-
dence for the ‘high-road’ (cortical) hypothesis. At the
same time, the existence of direct projections between
the pulvinar and intermediate areas of the ventral
stream leaves open the possibility that the category
selectivity found in this study originates in subcorti-
cal areas with the ventral stream simply relaying the
information to downstream areas.40

MODELS OF FEATURE
COMPUTATION

One of the main challenges associated with visual
categorization stems from the need to build a repre-
sentation that achieves a difficult trade-off between
invariance and selectivity.41 On the one hand, our
visual system must build a visual representation that
is tolerant to the many factors affecting the appear-
ance of an image such as changes in the position,
scale, illumination or viewpoint of an object in our
field of view. On the other hand, the underlying vis-
ual representation must remain selective enough so
as to maintain an ability to judge subtle differences
between similar object categories. Different visual
categorization tasks may require different trade-offs
between selectivity and invariance, and computa-
tional models of feature computation form a contin-
uum from low-level to intermediate and higher-level
visual representations, which we review below (see
Table 1 for an overview).

Lower-Level Visual Features
Some of the simplest image features that have been
proposed are those based on linear filter responses.
These include filters modeled after the center-
surround receptive fields found in the LGN.42,43 For
instance, a simple parametric distribution (Weibull
function) computed over the response of such filters
has been proposed as a model of natural scene

recognition and was shown to be a good predictor of
brain EEG responses during rapid visual
presentations.43

Visual representations based on the output of
oriented filters such as Gabor functions, Gaussian
derivatives or other steerable filters have been exceed-
ingly popular in the past two decades. In computa-
tional models of the visual cortex, these filters aim to
mimic processing by cortical cells tuned to different
orientations and spatial frequencies as found in the
primary visual cortex.19 Gabor Jets, for instance,
have been used to model face recognition44 and
shown to account well for face similarity measure-
ments derived from psychophysical data.54 A few
years ago, closely related computational models of
the early visual cortex were shown to compete with
state-of-the-art computer vision algorithms.55,56

The Gist algorithm45 is another popular algo-
rithm based on relatively low-level oriented filters.
The model has been shown to perform well on a
variety of scene categorization tasks.57,58 Unlike the
Gabor Jets described above, the Gist algorithm relies
on local spatial pooling mechanisms to build a coarse
scene representation (and avoid an explosion in the
number of visual features used). A computational
model based on the Gist algorithm was shown to
account well for behavioral data on the effect of con-
text during rapid scene categorization.59

Visual Features of Higher Complexity
How do simple local visual representations, as found
in early cortical areas, yield the more complex visual
features found in higher visual areas of the visual
cortex and that are known to be optimal for visual
categorization?60,61 Currently, one of the most prom-
inent proposals is based on the notion of a visual
hierarchy whereby another (and possibly several)
filtering-like processing stages can be applied in
cascade.

TABLE 1 | Representative Models of Feature Computation, Corresponding Receptive Field (RF) Types and Complexity as well as Associated
Key References

Models RF types Complex Key references

Weibull Single layer, center-surround + 42,43

Gist, Gabor jets, V1 model Single layer, oriented + 44–46

Textons, TextSynth Two-layer, summary statistics ++ 47–49

Shape descriptors Fourier, boundary moments, medial axis ++ 50,51

Neocognitron, HMAX, deep learning Multi-layer, selectivity and invariance pooling +++ 41,52,53

The level of complexity is indicated with ‘+’ signs from lowest (+) to intermediate (++) and highest (+++). Many more visual features have been proposed in the
context of computer vision, and we here only focus on those that are relevant to biological vision.
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For instance, textons (the term was first coined
by Julesz to describe the fundamental atoms of pre-
attentive vision62), corresponding to combinations of
oriented linear filters via a two-stage cascade, were
shown to approach the level of accuracy of human
observers during the categorization of visual
scenes.47 Beyond scene categorization, one of the best
computer vision systems for the detection of contours
in natural images63 is also based on textons.

Another algorithm for computing intermediate-
level features, TextSynth, was derived from a success-
ful approach to texture synthesis.64 The TextSynth
algorithm not only takes into account first order sta-
tistics (i.e. feature count or mean feature responses
over a small region of space as with most features
described above) but also higher-order statistical
dependencies found in natural textures (including
kurtosis and other higher-order moments). This
approach was shown to predict human performance
in crowding experiments48,49 as well as the strength
of neuronal and fMRI responses in intermediate vis-
ual area V2.65

Much as features of intermediate complexity
can be obtained by pooling together simpler ones,
features of higher complexity can be obtained by
combining intermediate-level ones. This idea is a key
feature of many visual architectures including the
Neocognitron,52 deep learning networks66 and other
models of object recognition12,41,60,67–71 (see Ref 72
for a recent review).

The HMAX model12,41,70 shown in Figure 3
constitutes a representative example of the class of
feedforward hierarchical models. The model com-
bines mechanisms for the hierarchical build-up of
invariance and selectivity inspired by the Neocogni-
tron52 with view-based theories of 3D object recogni-
tion.73 HMAX tries to emulate the main information
processing stages across the entire ventral stream vis-
ual pathway and bridges the gap between multiple
levels of understanding:74 This system-level model
seems consistent with physiological data in nonhu-
man primates in different cortical areas of the ventral
visual pathway,70 as well as human behavioral data
during rapid categorization tasks with natural
images12,70,75 (but see also Ref 76–79 and later
discussion).

In recent years, a number of HMAX extensions
have been proposed. For the most part, these exten-
sions have focused on the learning of visual represen-
tations in intermediate stages of the model. One
prominent example includes the work by Masquelier
et al. who incorporated biologically plausible learn-
ing mechanisms in the HMAX based on temporal
continuity in video sequences,80 evolutionary

Classification
units

PIT / AIT

V4/PIT

V2/V4

V1/V2

FIGURE 3 | Sketch of the (HMAX) hierarchical model of visual
processing: Acronyms: V1, V2, and V4 correspond to primary,
secondary and quaternary visual areas, PIT and AIT to posterior and
anterior inferotemporal areas, respectively (tentative mapping with
areas of the visual cortex shown in color, some areas of the parietal
cortex and dorsal streams not shown). The model relies on two types
of computations: A max operation (shown in the dashed circles, also
called invariance pooling) over similar features at different position
and scale to gradually build tolerance to position and scale and a bell-
shaped tuning operation (shown in the plain circles, also called
selectivity pooling) over multiple features to increase the complexity of
the underlying representation, see Ref 12,70 and text for details.

WIREs Cognitive Science Models of visual categorization

Volume 7, May/June 2016 © 2016 Wiley Per iodica ls , Inc. 201



algorithms81 as well as spike-timing dependent-based
learning rules.71,82

Deep Learning Networks
Nearly all hierarchical models of object recognition
described above learn invariant visual representations
without any supervision using (Hebbian-like) unsu-
pervised learning rules. These models learn visual fea-
tures that are common in natural images irrespective
of their underlying diagnosticity for particular cate-
gorization tasks. This type of learning seems consist-
ent with ITC recordings that have shown that the
learning of position and scale invariance, for
instance, is driven by the subject’s visual experi-
ence83,84 and is unaffected by reward signals.85

In recent years, however, a class of neural net-
works called deep learning architectures have
brought about a revolution in machine learning.
These networks have pushed the state of the art on a
range of categorization problems ranging from
speech and music to text, genome and image catego-
rization (see Ref 66 for a very recent review). There
are two fundamental differences between these deep
learning architectures and hierarchical models of the
visual cortex such as HMAX and the Neocognitron
described above. First, learning across processing
stages is fully supervised: It uses the back-
propagation algorithm (see Ref 66 for a history)
which propagates an error signal from superficial
(categorization) layers toward deeper (perceptual)
processing stages. Thus only visual features that are
diagnostic for the trained categorization tasks will be
learned.

Second, unlike HMAX, whose parameters
(receptive field sizes, invariance and other tuning
properties, number of layers, etc) are constrained by
available neuroscience data, deep learning architec-
tures do not try to imitate biology at such a level of
detail. For instance, state-of-the-art deep learning
architectures incorporate many more layers (more
than 20 layers86,87) than the aforementioned hierar-
chical models of the visual cortex (e.g. seven layers
for HMAX) – possibly also incorporating not just
one visual architecture but entire ensembles of deep
networks for a given categorization task.86,87

Recent innovations in training methods have
yielded deeper networks with improved accuracy. Of
course, an increase in the number of layers and units
in the network comes at the expense of sample com-
plexity (see Section Models of Classification) as the
number of parameters to be learned increases
together with the complexity of the corresponding
classification function. Unsurprisingly, a very

significant effort has been dedicated in recent years
to building increasingly large annotated image and
video datasets (the ImageNet Large Scale Visual Rec-
ognition Challenge88 contains more than 1 million
images and 1000 categories) enabling the training of
increasingly large networks (compare with the 2010
PASCAL VOC challenge89 with less than 20,000
images and 20 categories).

Despite the absence of neuroscience constraints
on modern deep learning architectures, recent work
has shown that these architectures are better able to
explain ventral stream neural data than alternative
models.78,79,90,91 In addition, these networks outper-
form all other models by a large margin90 and are
starting to match human-level accuracy for difficult
object categorization tasks.87

MODELS OF CLASSIFICATION

A key question for cognitive science is to understand
the processes that link visual stimuli with category
labels. Our visual system must learn these associa-
tions and, beyond rote memorization, it must learn
to generalize to previously unseen exemplars. After a
brief mathematical description of the category learn-
ing problem, we review existing cognitive models of
categorization and survey different kinds of classifica-
tion problems.

Learning from Examples
Formally, visual categorization is the process by
which a set of visual stimuli xi (i = 1 … m) gets asso-
ciated with a category label yi to form (xi, yi)
exemplar-label pairs. In general, xi is a feature vector
in a possibly high dimensional space (see
Section Models of Feature Computation and
Figure 1). For instance, this could be N pixel intensi-
ties from an

ffiffiffiffiffi
N

p � ffiffiffiffiffi
N

p
input image or the response

of an N-dimensional array of photoreceptors or any
other feature detectors xi = x1i ,…xk

i ,…xN
i

� �
to the

presentation of stimulus xi.
For binary classification tasks, it is customary

to consider positive and negative training samples
(i.e. yi is a binary variable taking on values {−1, 1},
but in the general multiclass categorization case, yi
could take on any integer value). Multiclass categori-
zation problems, on the other hand, require choosing
the category (out of k possible) to which a visual
stimulus belongs. Formally, these can be described as
multiple binary classification problemsa. Learning to
categorize visual stimuli requires learning a
function,92 called the classification function or

Advanced Review wires.wiley.com/cogsci

202 © 2016 Wiley Per iodicals , Inc. Volume 7, May/June 2016



classifier f, that best represents the relation between
the inputs xi and the corresponding outputs yi such
that f(xi) ≈ yi.

One can distinguish between different kinds of
learning scenarios: In supervised learning, a teacher
provides input–output pairs to the learner. This is
closely approximated in a lab setting where, for
instance, a participant is being shown sets of exam-
ples from two classes with corresponding labels in
order to learn to discriminate between these two
categories. At the other extreme of the continuum, in
unsupervised learning scenarios, the learner is only
provided with training examples xi, and the yi labels
along with their associations with training examples
have to be ‘guessed.’ There also exist approaches that
are hybrids between supervised and unsupervised
learning schemes, such as the semi-supervised learn-
ing approach, whereby some but not all labels are
provided to the learner. More natural learning sce-
narios inspired by early behavioral psychology work
on conditioning include reinforcement learning algo-
rithms whereby the learner receives a reward/punish-
ment following its actions or decisions. The stimuli
and labels are never explicitly given as pairs but can
nonetheless be learned indirectly from the reward sig-
nal. These types of reinforcement learning scenarios
are extensively used in robotic applications (for
instance, for robots to learn to walk).

One needs to distinguish between the function
f(x) ≈ y that tries to predict the label y of an
unknown input stimulus x and the algorithm used to
learn the function f itself. There exist a multitude of
algorithms for learning classification functions that
have been proposed in the past decades of research
in machine learning. Some of the most common algo-
rithms in visual categorization include the perceptron
learning algorithm and extensions to neural networks
with multiple layers, as well as support vector
machines (SVMs) and closely related regularization
networks, boosting and many others (see Refs 93,94
for general overviews). All these algorithms aim at
selecting one of usually many possible classification
functions. These algorithms typically try to achieve a
difficult trade-off between minimizing the classifica-
tion error on the training set (i.e. fitting the training
data well) and finding a function that is sufficiently
smooth (to prevent overfitting to the training set and
provide some guarantee to generalize well to future
examples, see below).

To achieve this trade-off, a learner needs to
make explicit assumptions (this is related to the so-
called inductive bias in cognitive psychology) about
the nature of the categorization problem in order to
generalize to new exemplars that it has not

encountered so far. Different learning algorithms rely
on different assumptions.93,94 The maximum margin
assumption, for instance, which is used in the formu-
lation of SVMs, posits that the best classification
function will be the one that maximizes the distance
between the closest exemplars from the two classes
and the corresponding classification boundary.95

Nearest neighbor algorithms typically assume
that exemplars that fall within the same neighbor-
hood (i.e. that are near each other) belong to the
same class. In addition, there are many possible types
of functions93,94 (or kernels) that can be used to
parameterize the space of classification functions
used by the learner (which is independent of the
learning algorithm). For instance, the same classifica-
tion problem can be solved with a linear SVM or a
nonlinear SVM (including polynomial functions,
radial basis functions RBFs, etc). We next review
some of the main algorithms that have been pro-
posed in the past decades and that are of relevance to
cognitive psychology.

Machine Learning and Cognitive Models
One of the very first computational models of catego-
rization was the perceptron.96 It extends McCulloch
and Pitts’ earlier model of an artificial neuron97 with
the ability to adjust its synaptic weights via a simple
learning rule in order to learn new categories. The
underlying circuit used for categorization is quite
general, as it can describe any linear classification
function learned by modern learning algorithms.

An idealized classification unit receives its
inputs from an N-dimensional population of feature
detectors x = (xk)k = 1 … N with corresponding synap-
tic strengths w = (wk)k = 1 … N (Figure 4) that are
learned from a training set of exemplar-label pairs.
After learning, the unit predicts the category label of
a new stimulus x by comparing its output value given
by the sum of its inputs weighted by the correspond-
ing synaptic weights with a fixed threshold θ: y =
sign(

P
kw

kxk − θ). This is equivalent to evaluating
whether the stimulus falls on the right (positive) or
left (negative) side of a corresponding categorization
boundary (Figure 5).

In such boundary-based classification models,
the raw classifier output (before thresholding) is a lin-
ear function of the distance of the data point to the
decision boundary. A closely related cognitive psy-
chology model is the General Recognition Theory
(GRT) model and its extensions98 whereby a diffu-
sion process accumulates information along each fea-
ture dimension independently until a decision
boundary is reached.
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One of the key limitations of the original per-
ceptron learning algorithm is that it is limited to line-
arly separable classes. A significant extension of the
linear perceptron is the multilayer perceptron (MLP).
The architecture is built by stacking multiple percep-
trons on top of each other such that one stage feeds
into the next. These can be seen as precursors of the
feedforward hierarchical models and deep learning
architectures described in Section Models of Feature
Computation.

The MLP in effect implements a complex non-
linear function f between its input and output. In
fact, it can be shown that under relatively general
assumptions,99 certain architectures called universal
approximators like the MLP or the RBF discussed
below can approximate any arbitrary input–output
function (and hence categorization tasks of arbitrary

difficulty). However, learning to solve the problem
may require a prohibitively large number of training
samples and hence, all else being equal, it is always
desirable to consider the ‘simplest’ classification func-
tion sufficient to solve the categorization problem
(this principle is known as Occam’s razor).

A popular class of neural network models,
which are also universal approximators, are regulari-
zation networks based on radial basis functions (so-
called RBF networks). In the RBF scheme, a number
of ‘templates’ xi are stored in memory by individual
model units. These templates may correspond to indi-
vidual exemplars previously encountered by the net-
work or ‘prototypes’ learned via clustering of the
training data. During categorization, each unit
matches the input stimulus x against its template
using a particular kernel function K(xi, x). For RBF
networks, the kernel function takes the form of a
Gaussian function K(xi, x) = exp(−γ||xi − x||2), where
γ is a constant. A classification unit then computes
the sum of the response of all template units K(xi, x)
weighted by their associated synaptic weights ci. For-
mally, the categorization process can be described
with the following equation:

y=
X
i

ciK xi,xð Þ=
X
i

ciexp −γjjxi−xjj2
� �

:

This approach was shown to successfully learn to
synthesize novel object views from 2D templates
stored in memory.100 This so-called view-based the-
ory of pose-invariant object recognition offered an
alternative to models that rely on explicit 3D CAD-
like representations of objects11 and motivated subse-
quent monkey psychophysics and electrophysiology

... ...

w1 wn

xnx1 xk

wk

y ›�k w
k xk

FIGURE 4 | Simple categorization unit. A perceptron-like
categorization unit reweights the response of individual feature detectors
xk – from a population of N feature detectors x = (x1, … xk, … xN) –
by the corresponding vector of synaptic strength
w = (w1, … wk, … wN) before summing them up (

P
kw

kxk) and
subtracting off a threshold θ. This is followed by a rectification stage to
obtain a binary class label {−1, 1}. Formally this model unit would be
able to implement the classification boundary described in Figure 1.

Prototype-based(a) (b) (c)Exemplar-based (1NN) Linear perceptron

FIGURE 5 | Decision boundaries implemented by three different cognitive models of categorization. (a) Prototype-based, (b) exemplar-based and
(c) linear perceptron. Note that only the perceptron learning algorithm explicitly computes a decision boundary. A decision boundary can, however, be
recovered for instance-based algorithms by assigning a class-label to every point of the feature space by computing the distance between each point
and the closest prototype (obtained by computing the mean of all exemplars for each class) as in the prototype-based approach or the closest exemplar
as in the exemplar-based approach.
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studies.101 A refinement of the framework lead to the
Chorus of Prototypes model, which was shown to
generate correct predictions for behavioral, electro-
physiological and imaging experiments.102

RBF networks fall under the general family of
kernel methods. Many modern machine learning algo-
rithms correspond to different choices of the kernel
function described in Equation (3). This mathematical
formalism is quite general and, indeed, many of the
cognitive models of categorization described in the
past decades (see Table 2 for an overview and Ref
115 for a more in-depth review of these models) can
be formally shown to be special cases of Equation (3)
for a particular form of the kernel function.116 Repre-
sentative examples include the generalized context
model (GCM), which assumes that category exem-
plars are being stored in memory for later retrieval
during the categorization of new stimuli117 and a con-
nectionist variant called ALCOVE.110

Both the GCM and the ALCOVE models
belong to the general class of instance-based algo-
rithms, which also include popular machine
learning algorithms such as the nearest neighbor
algorithm (or the related prototype-based models).
The k-nearest neighbor (k-NN) algorithm, for
instance, is often referred to as a ‘lazy learning’ algo-
rithm because learning with this model only involves
storing exemplar-label pairs. The classification func-
tion is only approximated locally (around training
examples) and the actual crux of the computation is
deferred until classification. A category label is
obtained by associating the label of the k-nearest
neighbors to an unfamiliar example. An example of
the decision boundary associated with a 1-NN classi-
fier is shown on Figure 5. Unlike the other models
described above, k-NN does not re-weight dimen-
sions according to their diagnosticity for the task
(which is akin to stretching perceptual representa-
tions along relevant dimensions and shrinking them
along irrelevant ones).

Extensions of the GCM include the exemplar-
based random walk (EBRW) model by Nosofsky and
Palmeri.111 Categorization proceeds by sampling

stored exemplars sequentially, which pushes an inte-
grator toward one of two boundaries according to
the exemplar’s identity. The rate at which an exem-
plar is retrieved increases with its similarity to the
stimulus and the memory strength. The model was
shown to provide an account for the effects of famil-
iarity and similarity on the categorization process.

Prototype-based models constitute an alterna-
tive to the family of instance-based models described
above. Category prototypes are learned (usually by
clustering) and used in lieu of exemplars during cate-
gorization, thus reducing the number of category
instances to be stored (Figure 5). A related model is
the norm-based model of face perception (oftentimes
called the ‘average face’ model) whereby faces are
categorized by considering the distance along prespe-
cified directions in the space coding for face identities
with respect to a single average face prototype.118

A Note on Representational Complexity
One way to compare the quality of different visual
representations for a given categorization problem
(and a given stimulus set) is to consider their repre-
sentational complexity. The representational com-
plexity of a given visual representation can be
thought of as the complexity of the simplest classifi-
cation function necessary to reach a particular level
of categorization accuracy.

For instance, let us consider least-square regres-
sion as our learning algorithm and different classes
of decision functions (or kernels), say linear, quad-
ratic and Gaussian (one could also vary the regulari-
zation parameter to restrict the complexity of the
resulting decision function). Similarly, one could con-
sider neural networks with increasing numbers of
hidden units. The number of ‘wiggles’ on these func-
tions provides a coarse approximation of their degree
of freedom. With more free parameters, these func-
tions can exhibit sharper peaks and valleys, which in
turn, allow them to solve increasingly complex cate-
gorization problems. The number of wiggles can thus
be taken as a hand-wavy estimate of the relative

TABLE 2 | Representative Cognitive Models of Categorization

Models Categorization process Key references

RULEX, COVIS rule 103–105

GRT, perceptron, MLP boundary 106

Prototype, SUSTAIN prototype (single or clusters) 107–109

ALCOVE, GCM, ERBW, RBF exemplar 100,110–112

GRT, General Recognition theory; MLP, Multilayer Perceptron; GCM, Generalized Context Model; ERBW, Exemplar-Based Random Walk; RBF, Radial
basis function (network).
Many more models exist and we refer the readers to Refs 113,114 for a more complete survey of these models.
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complexity of these functions (linear < quadratic <
Gaussian).

In practice, beyond simple considerations on
the number of free parameters, one has to worry
about the capacity of a classification function which
needs to take into account the expressive power or
flexibility of the function. Several measures such as
the VC dimension have been proposed to make this
notion of capacity more rigorous.95 Measures of the
capacity of a classifier are important because they
provide bounds on the number of samples (also
called sample complexity) that are needed for proper
generalization of the corresponding classification
function.b There are exceptions to this general rule,
in particular, committees of perceptrons can give bet-
ter generalization than a single perceptron. The issue
of why this occurs has not been resolved.c

Let’s now turn to three hypothetical visual
representations shown in Figure 6. With no prior
assumption on the class of functions f to be learned,
the simplest classification function that can accu-
rately separate the data (i.e. without any classifica-
tion error) in panel (a) (linear) is simpler that the
simplest classification function that can separate the
data in panels (b) and (c) (quadratic and Gaussian
kernel, respectively). Hence, the complexity of the
representation in panel (a) is much lower than that of
the representation in panel (b), which is itself lower
than that of the representation in panel (c).

The argument above offers a measure of the rel-
ative effectiveness of different visual features to solve
a particular categorization problem because represen-
tations of lower complexity will yield classification
functions that require fewer examples to train or

equivalently, provides the best guarantee of generali-
zation to novel exemplars (see Ref 121 for a more in-
depth treatment). In practice, the complexity of visual
representations (such as when comparing a percep-
tual model to populations of cortical neurons) has to
be estimated empirically.77 It has been shown experi-
mentally that the representational complexity of deep
learning architectures tends to be much lower than
that of other architectures.77

OPEN QUESTIONS AND
FUTURE DIRECTIONS

In recent years, progress in our understanding of the
computational mechanisms underlying visual catego-
rization has been significant. Face detection systems
are now readily available on consumer-grade digital
cameras, and automated face identification algo-
rithms are being integrated in digital photo library
suites. Automated pedestrian detection and computer
systems for driver assistance are already available in
luxury vehicles and will become standard equipment
on most models in the near future. Below, we identify
some of the remaining challenges in our understand-
ing of the biological and computational mechanisms
underlying visual categorization.

Categorization Across Taxonomic Levels:
One or Multiple Computational
Mechanisms?
One may consider natural object categories at three
distinct levels of abstraction122 (see Table 3): The

(a) (b) (c)

Low High

Sample complexity

FIGURE 6 | Representational complexity. Not all feature representations are created equal. Here we compare three hypothetical visual
representations for the same set of stimuli and how they impact the subsequent classification processes. Individual category exemplars are shown
as dots (blue and green corresponding to each of the two classes) and classification functions as a red line. Representation (a) is the best
representation for the categorization problem considered because the two classes can be separated by one of the simplest classification functions
(i.e. a linear function). The complexity of the corresponding classification function increases from left to right. Representation (b) and (c) will, in
principle, require more training examples to properly generalize to new stimuli or equivalently will tend to under-perform Representation (a) in
regimes where relatively small numbers of training examples are available.
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superordinate level corresponds perhaps to the most
popular task in both machine and biological percep-
tion, and is often referred to as the ‘detection’ task.
This includes categorizing a target object category
(e.g. animals, vehicles, people or faces) against dis-
tractor stimuli that do not contain the target object
category (often times natural scenes or other object
categories). The basic level (e.g. dog vs. non-dog ani-
mals) has been described as the level for which mem-
bers are first categorized, whereby additional
processing may be needed for other levels122 (but
see later discussion). The subordinate level
(e.g. dalmatian vs. non-dalmatian dogs) is also com-
monly referred to as the fine-level categorization in
computer vision (e.g. which type of dog is it?). Object
‘recognition’ usually refers to classification tasks at
the same basic level (e.g. cats vs. dogs or animals
vs. people) while ‘identification’ usually corresponds
to discriminating between one specific versus other
instances of an object category (e.g. my dog Rusty
vs. other dogs).

The past decade of research has shown that
there exist systematic differences in participants’
behavioral responses across taxonomic levels, e.g. Ref
123–125. For instance, observers’ subordinate-level
categorization of natural object categories tends
to be slower and less accurate than basic-level catego-
rization.124 Participants’ basic-level categorization
of natural scene categories tends to be slower
and less accurate than superordinate-level
categorization.125,126

These systematic differences have often been
taken as suggestive evidence for separate computa-
tional mechanisms governing different categorization

tasks. For instance, it is often assumed that face
detection and people recognition rely on separate
computational mechanisms.127,128 Similarly, seman-
tic theories of categorization assume an underlying
hierarchical organization of the categorization pro-
cesses with some categorization tasks taking prece-
dence over others. For instance, ‘entry-point’ theories
typically assume that memory-related factors, includ-
ing typicality, affect which taxonomic level will act
as an entry-point for categorization.129 Another
prominent theory is the ‘global-to-specific’ theory,
whereby categorization at more global stages needs
to be completed before processing at finer levels can
begin. Greene and Oliva130 suggested that the catego-
rization of global scene properties (e.g. ‘is the scene
open or closed?’) is a necessary first step for more
specific categorization tasks including basic-level cat-
egorization. A similar explanation has been proposed
to explain the ‘superordinate advantage’ in scene cat-
egorization characterized by participants’ higher
accuracy and faster reaction times for categorization
at the superordinate versus basic level of
categorization.125,126

Interestingly, from the computational point-of-
view, however, classification tasks at different levels
of categorization are equivalent (Figure 7, see Ref 73
for a discussion). The aforementioned categorization
problems can all be described within the general clas-
sification framework described in Section Models of
Classification: Different categorization problems sim-
ply correspond to multiple associations of the same
xi stimuli with different class labels yti where the
t reflects different categorization tasks. Indeed, very
recent work131 has shown that, for the case of rapid
scene categorization, the differences in behavioral
responses observed across different tasks reflect natu-
ral variations in perceptual discriminability (com-
puted using a model of categorization as reviewed in
Section Models of Classification trained using a very
large database of scene images). Furthermore, the
study showed that by properly selecting visual stimuli
using the proposed computational model, it is possi-
ble to reverse the ‘superordinate advantage.’ It
remains an open question whether similar models
and ideas also extend to other classes of stimuli
beyond scenes such as animals132 or faces.124

On the Need to Integrate Models of
Feature Computation and Categorization
As stated throughout this review, studies on visual
representations and categorization have been con-
ducted somewhat independently.4,5 One of the key
assumptions in most previous work is that the brain

TABLE 3 | Examples of Category Taxonomies122

Superordinate Basic Subordinate

Furniture Chair Kitchen chair

Living-room chair

Table Kitchen table

Dining-room table

Lamp Floor lamp

Desk lamp

Tree Oak White oak

Red oak

Maple Silver maple

Sugar maple

Birch River birch

White birch
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mechanisms responsible for the computation of vis-
ual features are somewhat distinct and independent
from those responsible for categorization. As dis-
cussed in Section The Neural Basis of Visual Catego-
rization, a growing number of electrophysiology
studies have started to show the limits of this dichot-
omy. For instance, although the ventral stream is
commonly thought of as primarily responsible for
the extraction of visual features, significant category
signals can already be found in intermediate133 and
low134 visual areas.

It is very unlikely that category signals found
within early ventral stream areas arise from purely
bottom-up visual inputs (as predicted by feedforward
hierarchical models and most models described in
this review). Such category signals are likely to ema-
nate from cortical feedback from higher level visual
areas (e.g. Ref 135–137) involved in categorization
tasks. Understanding the neural mechanisms used for
combining bottom-up sensory-driven information
with top-down attention and memory-driven pro-
cesses will require the development of computational
models which integrate feature computation and cat-
egorization processes.

Beyond Categorization: Visual Reasoning
Most modern vision architectures including the ones
described in Section Models of Feature Computation
are pre-attentive vision architectures. They perform
well in visual categorization tasks that do not seem
to require attentional mechanisms such as those

based on the detection of diagnostic visual features.13

At the same time, they are expected to be quite lim-
ited in handling categorization tasks that require
explicit geometric relationships between features to
be represented. This lack of explicit representation of
geometric relations is consistent with results from
psychophysics experiments using rapid presentation
paradigms that have shown that participants often
fail to report the location of a target object that was
otherwise correctly detected.10

Overall, it is expected that these models will fail
to capture the scope of human visual categorization
capabilities beyond our very glimpse of a visual
scene. Indeed, a recent study compared human obser-
vers and state-of-the-art machine vision systems
for the classification of several artificial object cate-
gories.138 The study demonstrated that modern
(pre-attentive) visual architectures related to those
surveyed in Section Models of Feature Computation
perform well in visual categorization tasks that
involve relatively rigid objects or objects with diag-
nostic visual features (assuming enough training
examples). However, these same architectures were
quite limited in handling categorization problems
defined by rules rather than individual shapes as
when categorization boils down to a compositional
‘rule’ (see Ref 138 for details on the tasks).

Challenging tasks for models that are effortless
for human participants include the notion of ‘same-
ness’ (‘when all shapes are the same vs. at least one is
different’), ‘insideness’ (as when a smaller shape is
included vs. not included in a larger one) and ‘in-

Superordinate(a) (b) (c)

Animal Dogs

Inanimate objects Inanimate objects

Non-dog aminals

Dalmatian

Other dogs

Basic Subordinate

Inanimate objects

FIGURE 7 | Levels of categorization. One can distinguish between three levels of categorization. Shown are hypothetical examples related to
the categorization of animal stimuli and many alternatives are possible. (a) The superordinate level corresponds to categorization between animal/
animate versus non-animal/inanimate objects (i.e. any visual scene that does not contain an animal). (b) The basic level (also referred to as the
generic level of categorization) requires discrimination between various species (e.g. dog vs. non-dog animals). (c) Last, the subordinate level
requires discrimination between various dog types (e.g. dalmatian vs non-dalmatian, etc). Of course this classification is not unique and many
other classification types can be performed, such as cat versus dogs, etc. Binary classification tasks are very general and it can be shown formally
that any multiclass classification task (e.g. what animal is it? dog vs. cat vs. bird, etc) can be decomposed as multiple binary classification
problems.
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betweeness’ (‘when the unique shape is in-between
the other two vs. not’). It is worth emphasizing that
these categorization tasks were not speeded and that
images were presented until the participant
responded. It is thus very likely that attention is
needed to solve these types of reasoning tasks.

While it is becoming increasingly clear that atten-
tional mechanisms will be needed to solve many of
these ‘reasoning’ tasks, a key question for computa-
tional neuroscience will be to understand how atten-
tion may mechanistically operate on these early pre-
attentive representations to enable more complex
inferences derived from compositional rules (see
Ref 139 for one proposal exploiting multilevel contex-
tual constraints and Ref 140 for one proposal on how
attention can be implemented in a deep recurrent
network).

NOTES
a There are two main strategies to solve multiclass categori-
zation problems. The one-vs-all approach considers one
binary classification for each category versus the rest:
k classifiers are considered for each of the k classes and a
classification label is obtained by considering the classifier
with the largest output. The all-pairs approach (also called
one-vs-one) considers one binary classification for each
pair: n(n − 1)/2 classifiers thus need to be considered and a
classification label is obtained by voting across all pairs.
b Note that the argument above has to do with the ability
of a particular classifier to generalize to novel data, which
is quite different from the perspective of fitting these mod-
els to human behavioral data (see Ref 119 for a treatment
of the latter case).
c Indeed, Leo Breiman120 has called this ‘the most impor-
tant unsolved problem in machine learning.’
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