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Abstract1

Progress in deep learning has recently led to great successes in many engineering applications2

(LeCun et al., 2015). As a prime example, convolutional neural networks (CNNs), a type of3

feedforward neural network, are already approaching human accuracy on visual recognition tasks4

including object categorization (He et al., 2015) and face recognition (Kemelmacher-Shlizerman5

et al., 2016). Here, we show that feedforward neural networks struggle to learn abstract visual6

relations that are otherwise effortlessly recognized by non-human primates (Donderi and Zelnicker,7

1969; Katz and Wirght, 2006), birds (Daniel et al., 2015; Martinho III and Kacelnik, 2016), rodents8

(Wasserman et al., 2012) and even insects (Giurfa et al., 2001). We systematically study the ability9

of feedforward neural networks to learn to recognize a variety of visual relations and demonstrate10

that same-different visual relations pose a particular strain on these networks. Networks fail11

to learn same-different visual relations when rote memorization becomes impossible (as when12

stimulus variability exceeds their effective capacity). The comparative success of biological neural13

networks in learning visual relations suggests that feedback mechanisms such as attention, working14

memory and perceptual grouping are the key components underlying human-level abstract visual15

reasoning.16

Keywords: Visual Relations; Visual Reasoning; Convolutional Neural Networks; Deep Learning;17

Working Memory; Visual Attention18
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Introduction19

Consider the images on Figure 1(a). These images were correctly classified as two different breeds20

of dog by a state-of-the-art computer vision system called a deep “convolutional neural network”21

(CNN; He et al., 2015). This is quite a remarkable feat because the network must learn to extract22

subtle diagnostic cues from images subject to wide variability of factors such as scale, pose and23

lighting. The network was trained on millions of photographs, and images such as these were24

accurately categorized into one thousand natural object categories, surpassing, for the first time,25

the accuracy of a human observer for the recognition of one thousand image categories on the26

ImageNet classification challenge.27

Now, consider the image on the left side of Figure 1(b). On its face, it is quite simple compared28

to the images on Figure 1(a). It is just a binary image containing two three-dimensional shapes.29

Further, it has a rather distinguishing property: both shapes are the same up to rotation. The30

relation between the two items in this simple scene is rather intuitive and obvious to a human31

observer. Moreover, the ability to detect visual sameness is not unique to humans. In a striking32

example from Martinho III and Kacelnik (2016), newborn ducklings were shown to imprint on an33

abstract concept of “sameness” from birth (Figure 1(b), right panel). Yet, as we will show in this34

study, CNNs struggle to learn this seemingly simple concept.35

Why is it that a CNN can accurately categorize natural images while struggling to recognize a36

simple abstract relation? That such task is difficult or even impossible for contemporary computer37

vision algorithms like CNNs, is known. Previous work by Fleuret et al. (2011) has shown that38
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black-box classifiers fail on most tasks from the synthetic visual reasoning test (SVRT), a battery39

of twenty-three visual-relation problems, despite massive amounts of training data. More recent40

work has shown how CNNs, including variants of the popular LeNet (LeCun et al., 1998) and41

AlexNet (Krizhevsky et al., 2012) architectures, could only solve a handful of the twenty-three42

SVRT problems (Ellis et al., 2015; Stabinger et al., 2016). Similarly, Gülçehre and Bengio (2013),43

after showing how CNNs fail to learn a same-different task with simple binary “sprite” items, only44

managed to train a multi-layer perceptron on this task by providing carefully engineered training45

schedules.46

However, these results were inconclusive. First, each of these studies only tested a small number of47

feedforward architectures, leaving open the possibility that low accuracy on some of the problems48

might simply be a result of a poor choice of model hyper-parameters. Second, while the twenty-three49

SVRT problems represent a diverse collection of visual relations, each problem has different image50

features. Thus, the performance of a computational model on a given problem may be driven by51

specific features in that problem, rather than the underlying abstract rule. To our knowledge, there52

has been no systematic exploration of the limits of contemporary machine learning algorithms to53

solve relational reasoning problems. Additionally, the issue has been overshadowed by the recent54

success of novel architectures called “relational networks” (RNs) on seemingly challenging “visual55

question answering” benchmarks (Santoro et al., 2017).56

In this study, we probe the limits of feedforward neural networks including CNNs and RNs on57

visual-relation tasks. In Experiment 1, we perform a systematic performance analysis of CNN58

architectures on each of the twenty-three SVRT problems, which reveals a dichotomy of visual-relation59
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problems: hard same-different problems and easy spatial-relation problems. In Experiment 2, we60

introduce a novel, controlled, visual-relation challenge called PSVRT, which we use to demonstrate61

that CNNs solve same-different tasks only inefficiently, via rote memorization of all possible62

spatial arrangements of individual items. In Experiment 3, we examine two models, the RN and a63

novel Siamese network, which simulate the effects of perceptual grouping and attentional routing64

to solve visual relations problems. We find that the former tends to overfit to particular item65

features, but that the latter can render seemingly difficult visual reasoning problems rather trivial.66

Overall, our study suggests that a critical re-appraisal of the capability of current machine vision67

systems is warranted. We further argue that mechanisms for individuating objects and manipulating68

their representations, presumably through feedback processes that are currently lacking in current69

feedforward architectures, are necessary for abstract visual reasoning.70

Experiment 1: A taxonomy of visual-relation problems71

The SVRT challenge72

The Synthetic Visual Reasoning Test (SVRT) is a collection of twenty-three binary classification73

problems in which opposing classes differ based on whether or not images obey an abstract rule74

(Fleuret et al., 2011). For example, in problem number 1, positive examples feature two items75

which are the same up to translation (Figure 2), whereas negative examples do not. In problem 9,76

positive examples have three items, the largest of which is in between the two smaller ones. All77

stimuli depict simple, closed, black curves on a white background.78

For each of the twenty-three problems, we generated 2 million examples split evenly into training79
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and test sets using code made publicly available by the authors of the original study at http:80

//www.idiap.ch/~fleuret/svrt.81

Hyper-parameter search82

We tested CNNs of three different depths (2, 4 and 6 convolutional layers) and three different83

convolutional receptive field sizes (2×2, 4×4 and 6×6) for a total of nine networks. All networks84

used pooling kernels of size 3×3, convolutional strides of 1, pooling strides of 2 and three fully85

connected layers. Pooling layers used ReLu activations. We trained all nine networks on each86

problem and selected the best-performing network for each problem. All networks were trained87

using the Adaptive Moment Estimation (Adam) optimizer (Kingma and Ba, 2015) with base88

learning rate of η = 10−4. All experiments were run using TensorFlow (Abadi et al., 2016).89

Figure 2. Examples images of twenty-three SVRT problems. For each problem, three example

images, two negative and one positive, are displayed in a row. Problems are ordered and

color-coded identically to Figure 3. Images in each problem respect a certain structure (e.g., In

problem 9, three objects, identical up to a scale, are arranged in a row.). Positive and negative

categories are then characterized by whether or not objects in an image respect a rule (e.g., In

problem 3, an image is considered positive if it contains two touching objects and negative if

it contains three touching objects.). Descriptions of all problems can be found in Fleuret et al.

(2011).90

Results91

Shown in Figure 3 is a bar plot of the best-performing network accuracy for each of the92

twenty-three SVRT problem (sorted by accuracy). Bars are colored red or blue according to the93

SVRT problem descriptions given in (Fleuret et al., 2011). Problems whose descriptions have94
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words like “same” or “identical” are colored red. These Same-Different (SD) problems have items95

that are congruent up to some transformation. Spatial-Relation (SR) problems, whose descriptions96

have phrases like “left of”, “next to” or “touching,” are colored blue. Figure 2 shows positive and97

negative samples for each of the corresponding twenty-three problems (also sorted by accuracy).98

The resulting dichotomy across the SVRT problems is striking (Figure 3). CNNs fare uniformly99

worse on SD problems than they do on SR problems. Many SR problems were learned100

satisfactorily, whereas some SD problems (e.g., problems 20, 7) resulted in accuracy not101

substantially above chance. From this analysis, it appears as if SD tasks pose a particularly102

difficult challenge to CNNs. This result matches earlier evidence for a visual-relation dichotomy103

hypothesized by Stabinger et al. (2016) which was unknown to us at the time of our own104

experiments.105

Additionally, our search revealed that SR problems are equally well-learned across all network106

configurations, with less than 10% difference in final accuracy between the worst and the best107

network. On the other hand, larger networks yielded significantly higher accuracy on SD problems108

compared to smaller ones, suggesting that SD problems require a higher capacity than SR109

problems. Experiment 1 corroborates the results of previous studies which found feedforward110

neural networks performed badly on many visual-relation problems (Fleuret et al., 2011; Gülçehre111

and Bengio, 2013; Ellis et al., 2015; Stabinger et al., 2016; Santoro et al., 2017) and suggests that112

low accuracy cannot be simply attributed to a poor choice of hyper-parameters.113
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Limitations of the SVRT challenge114

Though useful for surveying many types of relations, the SVRT challenge has two important115

limitations. First, different problems have different image features. For instance, Problem 2116

(“inside-outside”) requires that an image contain one large object and one small object. Problem 1117

(“same-different up to translation”), on the other hand, requires that an image contains two items118

identically-sized and positioned without one being contained in the other. In other cases, different119

problems simply require different number of objects in a single image (two items in Problem 1120

vs. three in Problem 9). Overall, this leaves open the possibility that image features, not abstract121

relational rules, make some problems harder than others. Second, the ad hoc procedure used to122

generate simple, closed curves as items in SVRT prevents quantification of image variability and123

its effect on task difficulty. As a result, even within a single problem in SVRT, it is unclear whether124

its difficulty is inherent to the classification rule itself or simply results from the particular choice125

of image generation parameters unrelated to the rule. A better way to compare visual-relation126

problems would be instead to define various problems on the same set of images.127

Experiment 2: A systematic comparison between spatial-relation and128

same-different problems129

The PSVRT challenge130

To address the limitations of SVRT, we constructed a new visual-relation benchmark consisting of131

two idealized problems from the dichotomy that emerged from Experiment 1 (Figure 4): Spatial132

Relations (SR) and Same-Different (SD). Critically, both problems in this new benchmark used133

the exact same images, but with different labels. Further, we parameterized the dataset so that we134
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could systematically control various image parameters, namely, the size of scene items, the number135

of scene items, and the size of the whole image. Items were binary bit patterns placed on a blank136

background.137

For each configuration of image parameters, we trained a new instance of a single CNN architecture138

and measured the ease with which it fit the data. Our goal was to examine how hard it is for a CNN139

architecture to learn relations for visually-different but conceptually-equivalent problems. For140

example, imagine two instances of the same CNN architecture, one trained on a same-different141

problem with small items in a large image, and the other trained on large items in a small image. If142

the CNNs can truly learn the “rule” underlying these problems, then one would expect the models143

to learn both problems with more-or-less equal ease. However, if the CNN only memorizes the144

distinguishing features of the two image classes, then learning should be affected by the variability145

of these features. For example, when the image and items are large, there are simply more possible146

samples, which might slow down the training of a CNN trying to learn by rote memorization. In147

rule-based problems such as visual relations, these two behaviors can be distinguished by training148

and testing the same architecture on a problem instantiated over a multitude of image distributions.149

There is no hold-out set in this experiment. Our main question is not whether a model trained150

on one set of images can accurately predict the labels of another, unseen set of images sampled151

from the same distribution. Rather, we want to understand whether an architecture that can easily152

learn generalizable representations of one set of image parameters can also learn comparably153

generalizable representations of another set of parameters with equal ease by taking advantage154

of the abstractness of the visual rule.155
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Methods156

Our image generator produces a gray-scale image by randomly placing square binary bit patterns157

(consisting of values 1 and −1) on a blank background (with value 0). The generator uses three158

parameters to control image variability: the size (m) of each bit pattern or item, the size (n) of159

the input image and the number (k) of items in an image. These parameters allow us to quantify160

the number of possible images in a dataset as O(Pn2,k 2km2
), where Pa,b denotes the number of161

possible permutations of a elements from a set of size b. Our parametric construction allows a162

dissociation between two possible factors that may affect a problem difficulty: classification rules163

vs. image variability. To highlight the parametric nature of the images, we call this new challenge164

the parametric SVRT or PSVRT.165

Additionally, our image generator is designed such that each image can be used to pose both166

problems by simply labeling it according to different rules (Figure 4). In SR, an image is classified167

according to whether the items in an image are arranged horizontally or vertically as measured168

by the orientation of the line joining their centers (with a 45◦ threshold). In SD, an image is169

classified according to whether or not it contains at least two identical items. When k ≥ 3, the170

SD category label is determined by whether or not there are at least 2 identical items in the171

image, and the SR category label is determined according to whether the average orientation172

of the displacements between all pairs of items is greater than or equal to 45◦. Each image is173

generated by first drawing a joint class label for SD and SR from a uniform distribution over174

{Different,Same}×{Horizontal,Vertical}. The first item is sampled from a uniform distribution175

in {−1,1}m×m. Then, if the sampled SD label is Same, between 1 and k−1 identical copies of the176

first item are created. If the sampled SD label is Different, no identical copies are made. The rest177
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of k unique items are then consecutively sampled. These k items are then randomly placed in an178

n×n image while ensuring at least 1 background pixel spacing between items. Generating images179

by always drawing class labels for both problems ensures that the image distribution is identical180

between the two problem types.181

We trained the same CNN repeatedly from scratch over multiple subsets of the data in order to see if182

learnability depends on the dataset’s image parameters. CNNs were trained on 20 million images183

and training accuracy was sampled every 200 thousand images. These samples were averaged184

across 10 repetitions of each condition, yielding a single, scalar measure of learnability called185

“average training accuracy” (ATA). In all of our experiments, accuracy either gradually increased186

or saturated at some fixed value. Therefore, ATA is high only when accuracy increases earlier and187

more rapidly throughout the course of training and if it converges to a higher final accuracy by the188

end of training.189

First, we found a baseline architecture which could easily learn both same-different and190

spatial-relation PSVRT problems for one parameter configuration (item size m = 4, image size191

n = 60 and item number k = 2). Then, for a range of combinations of item size, image size192

and number of items, we trained an instance of this architecture from scratch. If a network193

uses the first strategy when learning the problem, the resulting representations will be efficient at194

handling variations unrelated to the relation (e.g., a feature set to detect any pair of items arranged195

horizontally). As a result, the network should be equally good at learning the same problem in196

other image datasets with greater intra-category variability. In other words, average accuracy will197

be consistently high over a range of image parameters. Alternatively, if the network’s architecture198
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doesn’t allow for such representations and thus is only able to learn prototypes of examples within199

each category, the architecture will be progressively worse at learning the same visual relation200

instantiated with higher image variability. In this case, average accuracy will gradually decrease201

as image variability increases.202

We varied each of three image parameters separately to examine its effect on learnability. This203

resulted in three sub-experiments (n was varied between 30 and 180 while m and k were fixed204

at 4 and 2, respectively; m was varied between 3 and 7, while n and k were fixed at 60 and 2,205

respectively; k was varied between 2 and 6 while n and m were fixed at 60 and 4, respectively). To206

use the same CNN architecture over a range of image sizes n, we fixed the actual input image207

size at 180 by 180 pixels by placing a smaller PSVRT image (if n < 180) at the center of a208

blank background of size 180 by 180 pixels. The baseline CNN was trained from scratch in209

each condition with 20 million training images and a batch size of 50. To examine the effect210

of the network size on learnability, we also repeated our experiments with a larger network control211

(Figure 5, purple curve) with 2 times the number of units in the convolution layers and 4 times the212

number of units in the fully-connected layers.213

Results214

In all conditions, we found a strong dichotomy in the observed learning curves. In cases where215

learning occurred, training accuracy abruptly jumped from chance-level and gradually plateaued.216

We call this sudden, dramatic rise in accuracy the “learning event”. The ATA from a training217

session was determined by when this sudden rise occurred and at what accuracy it plateaued.218

When there was no learning event, accuracy remained at chance and ATA was 0.5.219
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In SR, across all image parameters over all random initializations, the learning event immediately220

occurred at the start of training and quickly approached 100% accuracy, producing consistently221

high and flat ATA curves (Figure 5, blue dotted lines). In SD, however, we found that ATA222

was overall significantly lower than SR even though the training images have been sampled from223

the same distribution. Additionally, we observed a significant straining effect from one image224

parameter, image size (n). Increasing image size progressively decreased ATA by making learning225

event progressively less likely (Figure 5, red dotted lines): the network learned SD in 7 out of 10226

random initializations for the baseline parameter configuration while it only learned it in 4 out of 10227

on 120×120 images. At image size 150×150 and above, the network never learned the problem.228

Increasing the number of items produced a slightly different straining effect. While the frequency229

at which learning event occurred did not change significantly, the final accuracy reached by the230

end of training steadily decreased from over 90% to around 80%. In contrast, increasing item size231

produced no visible straining effect on the CNN. Similar to SR, learnability, both in terms of the232

frequency of learning event as well as final accuracy, did not change significantly over the range233

of item sizes we considered. Using a CNN with more than twice the number of free parameters234

as a control did not change the qualitative trend observed in the baseline model (Figure 5, purple235

dotted lines).236

We hypothesize that these straining effects reflect the way image size contributes to image237

variability. A little arithmetic shows that image variability is an exponential function of image238

size as the base and number of items as the exponent. Thus, increasing image size while fixing the239

number of items at 2 results in a quadratic-rate increase in image variability, while increasing the240
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number of items leads to an exponential-rate increase in image variability. Image variability is also241

an exponential function of item size as the exponent and 2 (for using binary pixels) as the base.242

The comparatively weak effects of item size and item number sheds light on the computational243

strategy used by CNNs to solve SD. Our working hypothesis is that CNNs learn “subtraction244

templates”, filters with one positive region and one negative region (like a Haar or Gabor wavelet),245

in order to detect the similarity between two image regions. A different subtraction template is246

required for each relative arrangement of items, since each item must lie in one of the template’s247

two regions. When identical items lie in these opposing regions, they are effectively subtracted248

by the synaptic weights. This difference is then used to choose the appropriate same/different249

label. Note that this strategy does not require memorizing specific items. Hence, increasing item250

size (and therefore total number of possible items) should not make the task appreciably harder.251

Further, a single subtraction template can be used even in scenes with more than two items, since252

images are classified as “same” when they have at least two identical items. So, any straining253

effect from item number should be negligible as well. Instead, the principal straining effect with254

this strategy should arise from image size, which increases the possible number arrangements of255

items.256

Taken together, these results suggest that, when CNNs learn a PSVRT condition, they are simply257

building a feature set tailored to the relative positional arrangements of items in a particular data258

set, instead of learning the abstract “rule” per se. If a network is able to learn features that capture259

the visual relation at hand (a feature set to detect any pair of items arranged horizontally), then these260

features should, by definition, be minimally sensitive to the image variations that are irrelevant to261
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the relation. This seems to be the case only in SR. In SD, increasing image variability lowered ATA262

for the CNNs. This suggests that the features learned by CNN are not invariant rule-detectors, but263

rather merely a collection of templates covering a particular distribution in the image space.264

Experiment 3: Is object individuation needed to solve visual relations?265

Our main hypothesis is that CNNs struggle to learn visual relations in part because they are266

feedforward architectures which lack a mechanism for grouping features into individuated objects.267

Recently, however, Santoro et al. (2017) proposed the relational network (RN), a feedforward268

architecture aimed at learning visual relations without such an individuation mechanism. RNs are269

fully-connected feedforward networks which operate on pairs of so-called “objects” (Figure 6a).270

These objects correspond to feature columns coarsely sampled at all retinotopic locations from a271

high-level layer of a CNN (similar, in a sense, to the feature columns found in higher areas of the272

visual cortex, see Tanaka, 2003).273

As such, these feature vectors will sometimes represent parts of the background, incomplete274

items or even multiple items because the network does not explicitly represent individual objects.275

Santoro et al. (2017) found that an RN architecture substantially outperformed a baseline CNN276

on various reasoning problems. The authors emphasize that their model performed well even277

though it employs a highly unstructured notion of object: “A central contribution of this work is278

to demonstrate the flexibility with which relatively unstructured inputs, such as CNN or LSTM279

embeddings, can be considered as a set of objects for an RN.”280

In particular, the RN was able to outperform a baseline CNN on the “sort-of-CLEVR” challenge,281

a visual question answering task using images with simple geometric items (see Figure 7(a) for282
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examples of sort-of-CLEVR items). In “sort-of-CLEVR”, scenes contain up to six items, each of283

which has one of two shapes and six colors. The RN was trained to answer both relational questions284

(e.g., “What is the shape of the object that is farthest from the gray object?”) and non-relational285

questions (e.g., “Is the red object on the top or bottom of the scene?”). However, while the authors286

trained the RN to compare the attributes of scene items (e.g., “How many objects have the same287

shape as the green object.”), they did not examine whether the model could learn the concept of288

sameness, per se (e.g., “Are any two items the same in this scene?”). Detecting sameness is a289

particularly hard task because it requires matching all attributes between all pairs of items.290

Without testing the RN on this more difficult task, it is difficult to evaluate the efficacy of the291

model’s “unstructured” objects. If the model learns that an object is a flexible combination of any292

colors and shapes from its training, then it should be able to detect same-different relations among293

novel combinations of familiar shapes and colors. That is, it should be able to “group” these item294

attributes into a new object. If, on the other hand, RN object representations reflect particular295

familiar color-shape combinations, then it would not be able to transfer the concept of sameness to296

new combinations.297

To investigate these alternatives, we trained an RN on a two-item same-different task using298

sort-of-CLEVR items, but leaving out certain color-shape combinations. Furthermore, to examine299

the efficacy of perceptual grouping on same-different problems, we introduced a novel model300

which forcibly groups pixels in single items into object representations.301

Our new model is a “Siamese” network (Bromley et al., 1994) which processes each scene item in302

a separate (CNN) channel and then passes the processed items to a single classifier network. This303
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idealized model simulates the effects attentional selection and perceptual grouping by segregating304

the representations of each item. Unlike an RN, whose object representations may in fact contain305

no item, multiple items or incomplete items, object representations in the Siamese network contain306

exactly one item.307

Methods308

Sub-experiment 3.1: Failure of relational transfer to novel attribute combinations Here,309

we sought to measure the ability of an RN to transfer the concept of sameness from a training310

set to a novel set of objects, a classic and very well-studied paradigm in animal psychology (see311

Wright and Kelly, 2017; for a review) and thus an important benchmark for models of visual312

reasoning. We used software for relational networks publicly available at https://github.313

com/gitlimlab/Relation-Network-Tensorflow. This is essentially the architecture314

and training procedure used in the original study and we confirmed that this model was able to315

reproduce the results from (Santoro et al., 2017) on the sort-of-CLEVR task.316

We constructed twelve different versions of the sort-of-CLEVR dataset, each one missing one of317

the twelve possible color × shape attribute combinations, see Figure 7(a). Images in each dataset318

only depicted two items, randomly placed on a 128 × 128 background. Half of the time, these319

items were the same (same color and same shape). For each dataset, we trained the RN architecture320

to detect the possible sameness of the two scene items while measuring validation accuracy on the321

left-out images. We then averaged training accuracy and validation accuracy across all of the322

left-out conditions.323
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Sub-experiment 3.2: The need for perceptual grouping and object individuation Here, we324

introduce a Siamese network which processes scene items individually in separate CNN “channels”325

(Fig. 6b). First, we split each PSVRT stimulus into several images, each of which contained a326

single item. These images were then individually processed by two copies of the same network327

(mimicking, in a sense, the process of sequentially attending to individuated objects). For example,328

if one stimulus contained two objects in the original PSVRT, our new stimulus would be presented329

to the Siamese network as two separate images. The scene items retained their original location in330

each image so that item position varied just as widely as in the original PSVRT. These images were331

then individually processed by each CNN channel, using the same architecture as in Experiment332

2. This resulted in two object-separated feature maps in the topmost retinotopic layer (Fig. 6b).333

These feature maps were then concatenated before being passed to the classifier.334

This Siamese configuration is essentially an idealized version of the kinds of object representations335

resulting from psychological processes such as perceptual grouping and attentional selection.336

Because convolutional layers in this configuration are now constrained to process only one object at337

a time, regardless of the total number of objects presented in an image, the network can completely338

disregard the positional information of individual objects and only preserve information about their339

identities under comparison.340

Results341

Sub-experiment 3.1: Relational transfer to novel attribute combinations From the342

sort-of-CLEVR transfer task, we found that the RN does not generalize on average to left-out343

color+shape attribute combinations (Figure 7). Since there are only 11 color+shape combinations344
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in any given setup, the model did not need to learn to generalize across many items if it could345

simply memorize all combinations of “same” instances. As a result, the RN learned orders of346

magnitude faster than the CNNs in Experiment 2. However, while the average training accuracy347

curve (solid red) rose rapidly to around 90%, the average validation accuracy remained at chance.348

In other words, there was no transfer of same-different ability to the left-out condition, even though349

the attributes from that condition (e.g., cyan square) were represented in the training set, just not350

in that combination (e.g., cyan circle and green square) (Figure 7a).351

Sub-experiment 3.2: The need for perceptual grouping and object individuation We ran352

the Siamese model on the PSVRT tasks, again measuring ATA. The ATA curves for the Siamese353

network were strikingly different from that of the CNN in Experiment 2 (Figure 8). Barely any354

straining effect was observed on the SD task, and the model learned within 5M examples across355

all image size parameters. Since objects are individuated by fiat, the network need not learn all356

possible spatial arrangements of items. The network must simply learn to compare whichever two357

items reach the classifier layers through the two CNN channels. This greatly simplifies the SD358

problem, alleviating straining.359

Indeed, in informal experiments (data not shown) we found that very shallow Siamese networks360

(e.g. with one convolutional layer) could still learn SD much faster than baseline CNNs. These361

results indicate that object individuation makes same-different problems trivially easy. Naturally,362

we do not intend our Siamese network as a bona fide solution to visual reasoning, but rather as363

a proof of the efficacy of object individuation in visual reasoning problems. A genuine visual364

reasoning model would be able to dynamically select and group features in the scene using the365

mechanisms explored in the Discussion section.366
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Discussion367

Recent progress in computational vision has been significant. Modern deep learning architectures368

can discriminate between one thousand object categories (He et al., 2015) or identify faces among369

millions of distractors (Kemelmacher-Shlizerman et al., 2016) at a level approaching – and possibly370

surpassing that of human observers. While these neural networks do not aim to mimic the371

organization of the visual cortex in detail, they are at least partly inspired by biology. Modern372

deep learning architectures are indeed closely related to earlier hierarchical models of the visual373

cortex albeit with much better categorization accuracy (see Serre, 2015; Kriegeskorte, 2015; for374

reviews). Further, CNNs have been shown to account well for monkey inferotemporal data (Yamins375

et al., 2014) and human lateral occipital data (Khaligh-Razavi and Kriegeskorte, 2014; Guclu376

and van Gerven, 2015). In addition, deep networks have been shown to be consistent with a377

number of human behaviors including rapid visual categorization (Eberhardt et al., 2016), image378

memorability (Dubey et al., 2015), typicality (Lake et al., 2015b) as well as similarity (Peterson379

et al., 2016) and shape sensitivity (Kubilius et al., 2016) judgments.380

At the same time, there is a growing body of literature highlighting key dissimilarities between381

current deep network models and various aspects of visual cognition. One prominent example is382

adversarial perturbation (Goodfellow et al., 2015), structured image distortions that asymmetrically383

affects CNNs compared to human participants. Although barely perceptible to a human observer,384

adversarial perturbation renders an image unrecognizable to a CNN, even though the same CNN385

can correctly recognize the unperturbed image with high confidence. Another example is the poor386

generalization of CNNs in conditions that are effortless for human observers, such as learning387

novel object categories with minimal supervision or when the parts of a familiar object are shown388
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in unfamiliar but realistic configurations (Lake et al., 2015a; Saleh et al., 2016; Erdogan and Jacobs,389

2017). Direct evidence for qualitatively different visual strategies used by humans and CNNs was390

shown in (Ullman et al., 2016; Linsley et al., 2017).391

The present study adds to this body of literature by demonstrating feedforward neural networks’392

fundamental inability to efficiently and robustly learn visual relations. Our results indicate that393

visual-relation problems can quickly exceed the representational capacity of feedforward networks.394

While learning feature templates for single objects appears tractable for modern deep networks,395

learning feature templates for arrangements of objects becomes rapidly intractable because of396

the combinatorial explosion in the requisite number of templates. That notions of “sameness” and397

stimuli with a combinatorial structure are difficult to represent with feedforward networks has been398

long acknowledged by cognitive scientists (Fodor and Pylyshyn, 1988; Marcus, 2001). However,399

this limitation seems to have been overlooked by current computer vision scientists.400

Compared to the feedforward networks in this study, biological visual systems excel at detecting401

relations. Fleuret et al. (2011) found that human observers are capable of learning rather402

complicated visual rules and generalizing them to new instances from just a few training examples.403

Participants could learn the rule underlying the hardest SVRT problem for CNNs in our Experiment404

1, problem 20, from an average of about 6 examples. Problem 20 is rather complicated as it405

involves two shapes such that “one shape can be obtained from the other by reflection around406

the perpendicular bisector of the line joining their centers.” In contrast, the best performing407

CNN model for this problem could not get significantly above chance from one million training408

examples.409
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This failure of modern computer vision algorithms is all the more striking given the widespread410

ability to recognize visual relations across the animal kingdom. Previous studies showed that411

non-human primates (Donderi and Zelnicker, 1969; Katz and Wirght, 2006), birds (Daniel et al.,412

2015; Martinho III and Kacelnik, 2016), rodents (Wasserman et al., 2012) and even insects (Giurfa413

et al., 2001) can be trained to recognize abstract relations between training objects and then414

transfer this knowledge to novel objects. Contrast the behavior of these ducklings with the RN415

of Experiment 3, which demonstrated no ability to transfer the concept of same-different to novel416

objects (Figure 7) even after hundreds of thousands of training examples.417

There is substantial evidence that the neural substrate of visual-relation detection depends on418

re-entrant/feedback signals beyond feedforward, pre-attentive processes. It is relatively well419

accepted that, despite the widespread presence of feedback connections in our visual cortex, certain420

visual recognition tasks, including the detection of natural object categories, are possible in the near421

absence of cortical feedback – based primarily on a single feedforward sweep of activity through422

our visual cortex (Serre, 2016). However, psychophysical evidence suggests that this feedforward423

sweep is too spatially coarse to localize objects even when they can be recognized (Evans and424

Treisman, 2005). The implication is that object localization in clutter requires attention (Zhang425

et al., 2011).426

It is difficult to imagine how one could recognize a relation between two objects without spatial427

information. Indeed, converging evidence (Logan, 1994; Moore et al., 1994; Rosielle et al.,428

2002; Holcombe et al., 2011; Franconeri et al., 2012; van der Ham et al., 2012) suggests that429

the processing of spatial relations between pairs of objects in a cluttered scene requires attention,430
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even when individual objects can be detected pre-attentively.431

Another brain mechanism implicated in our ability to process visual relations is working memory432

(Kroger et al., 2002; Golde et al., 2010; Clevenger and Hummel, 2014; Brady and Alvarez, 2015).433

In particular, imaging studies (Kroger et al., 2002; Golde et al., 2010) have highlighted the role of434

working memory in prefrontal and pre-motor cortices when participants solve Raven’s progressive435

matrices which require both spatial and same-different reasoning.436

What is the computational role of attention working memory in the detection of visual437

relations? One assumption (Franconeri et al., 2012) is that these two mechanisms allow438

flexible representations of relations to be constructed dynamically at run-time via a sequence of439

attention shifts rather than statically by storing visual-relation templates in synaptic weights (as440

done in feedforward neural networks). Such representations built “on-the-fly” circumvent the441

combinatorial explosion associated with the storage of templates for all possible relations, helping442

to prevent the capacity overload associated with feedforward neural networks.443

Humans can easily detect when two objects are the same up to some transformation (Shepard and444

Metzler, 1971) or when objects exist in a given spatial relation (Fleuret et al., 2011; Franconeri445

et al., 2012). More generally, humans can effortlessly construct an unbounded set of structured446

descriptions about their visual world (Geman et al., 2015). Given the vast superiority of humans447

over modern computers in their ability to detect visual relations, we see the exploration of448

attentional and mnemonic mechanisms as an important step in our computational understanding of449

visual reasoning.450
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Figures/fig1_horizontal.png

Figure 1. (a) State-of-the-art convolutional neural networks can learn to categorize images

(including dog breeds) with high accuracy even when the task requires detecting subtle visual cues.

(b) In addition to categorizing visual objects, humans can also perform comparison between objects

and determine if they are identical up to a rotation (left). The ability to recognize “sameness” is also

observed in other species in the animal kingdom such as birds (right). The geometric figures are

adapted from (Shepard and Metzler, 1971), and the image with a duckling is taken with permission

from (Martinho III and Kacelnik, 2016).
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Figures/svrt_bars.png

Figure 3. SVRT results. Multiple CNNs with different combinations of hyper-parameters were

trained on each of the twenty-three SVRT problems. Shown are the ranked accuracies of the

best-performing network optimized for each problem individually. The x-axis shows the problem

ID. CNNs from this analysis were found to produce uniformly lower accuracies on same-different

problems (red bars) than on spatial-relation problems (blue bars). The purple bar represents a

problem which required detecting both a same-different relation and a spatial relation.
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Figures/PSVRT/examples/basic/PSVRT_examples.png

Figure 4. The PSVRT challenge. (Left) Four images show the joint categories of SD (grouped by

columns) and SR (grouped by rows) tasks. Our image generator is designed such that each image

can be used to pose both problems by simply labeling it according to different rules. An image

is Same or Different depending on whether it contains identical (left column) or different (right

column) square bit patterns. An image is Horizontal (top row) or Vertical (bottom row) depending

on whether the orientation of the displacement between the items is greater than or equal to 45◦.

These images were generated with the baseline image parameters: m = 4, n = 60, k = 2. (Right)

Six example images show different choices of image parameters used in our experiment: item size,

number of items and image size. All images shown here belong to Same and Vertical categories.

When more than 2 items are used, SD category label is determined by whether there are at least

two identical items in the image. SR category label is determined according to whether the average

orientation of the displacements between all pairs of items is greater than or equal to 45◦.
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Figures/PSVRT/results/AUC/psvrt_res_horizontal.png

Figure 5. Average Training Accuracy (ATA) curves over PSVRT image parameters. ATA denotes

the average value of accuracy in each experimental condition measured over the course of 20

million training images and over 10 random initializations. Three curves – SD (red), SD with a

large CNN control, (purple) and SR (blue) – are plotted. The three figures display average training

accuracy curves over each of three image variability parameters: item size, image size and number

of items.
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Figures/rn_diag.png

(a)

Figures/siamese_diag.png

(b)

Figure 6. A comparison between a relational network and the proposed Siamese architecture. (a) A relational

network (panel (a), top half) is a fully-connected, feedforward neural network which accepts pairs of CNN feature

vectors as input. First, the image is passed through a CNN to extract features. Every pair of feature activations

(“objects") at every retinotopic location in the final CNN layer is passed through the RN. The outputs of the RN on

every pair of activations is then summed and passed through a final feedforward network, producing the decision.

Depending on the spatial resolution of the final CNN layer and the receptive field of each neuron, the object

representations of an RN may correspond to a single scene item, multiple items, partial items or even the background.

(b) In contrast, objects in our Siamese network are forced to contain a single item. First, we split stimuli into several

images, each containing a single item. Then, each of the images is passed through a separate CNN (here, Channel 1

and Channel 2), producing a representation of a single object. These objects are then combined by concatenation into

a single representation and passed through a classifier. The network automates the attentional and perceptual grouping

processes suspected to underlie biological visual reasoning (see Discussion).
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Figures/rn_item_details.png

(a)

Figures/rn_lcs.png

(b)

Figure 7. (a) Sample items used during training and testing in Experiment 3. We trained relational

networks on twelve two-item same-different data sets each missing one color-shape combination

from sort-of-CLEVR (2 shapes× 6 colors). Then, we tested the model on the left-out combination.

The top and middle rows of panel (a) show two possible pairs of item when the left-out combination

is “cyan square”. Row 1 shows a cyan circle and row 2 shows a green square. However, only in

the test set is the model queried about images involving a cyan square (e.g., the “same” image in

row 3). Note that, during training, the model observes each left-out attribute, just not in the left-out

combination. (b) Averaged accuracy curves of an RN while being trained on the sort-of-CLEVR

data sets missing one color-shape combination. The red curve shows the training accuracy. The

blue dashed line shows the accuracy on validation data with the left-out items.
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Figures/mauc_img_size.pdf

Figure 8. Average Training Accuracy (ATA) curves for CNN and Siamese model on a two-item

same-different (SD) task. The CNN’s ATA curve (red) is taken from Experiment 2. The Siamese

network’s ATA curve (green) indicates almost no straining. The network learns equally well on

large images, for which there is great positional variety of items, as it does on small images, for

which there is much less variety.
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