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Abstract
We describe a low-cost behavior monitoring system for ze-
brafish, which uses a single-board Raspberry Pi R© computer
for imaging and a dedicated Intel R© MovidiusTM Neural Com-
pute Stick for computer vision. As a proof of concept, the
system is shown to robustly track pose on larvae (5-7 dpf) that
are typically very challenging to image. Open-source software
and executable code are made publicly available to be re-used
by other researchers.

Introduction
In contrast to human-derived annotations, automation
promises to bolster ethology by increasing throughput, im-
proving reproducibility and allowing novel types of quanti-
tative analyses (Egnor & Branson, 2016). Pharmacological
studies using small laboratory animals such as zebrafish are
expected to particularly benefit. These animals have become
popular screening tools because of their small size and their
ability to reproduce easily under laboratory conditions, mak-
ing them easy to maintain in the large numbers required for
high-throughput screening.

Indeed, automated tracking systems have already been suc-
cessfully used in a variety of zebrafish studies (see Rihel &
Schier, 2012, for review). However, existing tracking sys-
tems (e.g., Kato et al., 2004; Hicks et al., 2006; Ramazani et
al., 2007; Colwill & Creton, 2011; Maaswinkel et al., 2013;
Pérez-Escudero et al., 2014; Wang et al., 2014; Barker &
Baier, 2015; Nema et al., 2016) suffer several key limitations:
(1) they rely on relatively simple error-prone image process-
ing techniques (e.g., image subtraction, morphological opera-
tors, etc) that require manual threshold adjustments, severely
limiting their applicability to large-scale studies; (2) they only
track a single point on the animal body (but see Gomez-Marin
et al., 2012; Pelkowski et al., 2011), which is sufficient for
coarse motility measures (e.g., distance travelled, speed or
space used) and circadian rhythm but does not allow for the
analysis of finer reflexive behaviors such as optokinetic, op-
tomotor or visual-motor responses, or finer motor and visual
deficits. Existing systems are thus limited in scope, ease of
use, and accuracy, and are only partially automated.

Learning-based methods offer an alternative approach with
the potential to address several of the issues mentioned above.
In recent years, progress has been particularly significant
in the area of deep learning (LeCun et al., 2015). Sev-
eral deep neural network systems have been developed that
have been shown to approach and sometimes outperform hu-
mans in complex recognition tasks including object catego-
rization (He et al., 2016) and face recognition (Kemelmacher-
Shlizerman et al., 2016). Deep learning offers a unique op-
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Figure 1: Proposed image acquisition system: The system
includes a Raspberry Pi (model 3B) combined with a Pi cam-
era module v2 for video imaging as well as an Intel Movid-
ius Neural Compute Stick for tracking with a deep-learning
based system. Though the back light display is optional, uni-
form lighting enhances video quality and potentially enables
the presentation of stimuli for psychophysics studies.

portunity to fully automate video analysis for behavioral stud-
ies via end-to-end learning – reducing the need for human su-
pervision and, hence, significantly increasing throughput and
statistical power. However, to our knowledge, these advances
have not yet permeated zebrafish studies. One challenge with
deep learning algorithms is that they typically require high-
performance computing hardware (e.g., GPUs) which is typ-
ically not readily available in traditional animal laboratories.

Our goal is thus to develop a low-cost deep learning-
based system for zebrafish behavior monitoring. Several low-
cost systems using Raspberry Pi R© have already been de-
veloped for behavioral analysis including high-throughput,
open-sourced platforms (Maia Chagas et al., 2017; Geiss-
mann et al., 2017) and operant chambers (O’Leary et al.,
2018). One of the main shortcomings of these systems is that
they are usually limited by the poor processing power of the
Raspberry Pi’s CPU. A common workaround is to push pro-
cessing to more powerful clusters. Here, instead, we explore
the use of the recently released Intel R© MovidiusTM Neural
Compute Stick to augment a single-board Raspberry Pi com-
puter to build an open-source deep learning-based behavior
monitoring platform (Fig. 1).

Contributions Our contributions include: 1) an easy-to-
assemble low cost imaging system; 2) an application of neu-



Figure 2: Sample pose estimation results on 7-dpf larvae. We parameterized our zebrafish skeleton model with 4 joints (shown
as cyan, green, pink and red points on the images). Inputs to the pose estimation network are bounding box outputs from a fish
detector centered on the head of the animal.

ral computing for the behavioral analysis of zebrafish ; 3)
open-source software and executable code for pose estima-
tion/tracking; 4) a large annotated zebrafish pose dataset
(available on request) for other researchers to re-use.

Monitoring system overview
The imaging system includes a Raspberry Pi R©3 Model B run-
ning a Raspbian Stretch operating system. A second genera-
tion Raspberry Pi camera module v2 with a fixed-focus lens
was used. The Pi camera v2 module allows recording speed
of up to 30FPS at a spatial resolution of 1920×1080 pixels,
which is ideal for imaging small larvae.

Peripherals including monitor and keyboard/mice are op-
tional. All devices can be controlled from a desktop via se-
cure shell with a few simple commands. All software was
written in Python. Data processing code (see below) was
compiled to run inference on an Intel R© MovidiusTM Neural
Compute Stick. The resulting system is both simple to as-
semble and affordable (Table 1).

Because of the small size of the Raspberry Pi camera, the
system has the potential to be extended to a multi-well imag-
ing system. Minimizing paraphernalia is especially desirable
when stacking up multiple cameras to boost throughput. Rel-
evant documentation, code and a disk image of our environ-
ment is released here https://github.com/serre-lab/
rpi-ncs-toolkit.

Animal handling
Eggs were collected in a shallow tray for two hours follow-
ing light onset from a breeding population of WT adult ze-
brafish. The eggs were transferred to a 1L plastic breeding
tank (Aquatic Habitats) containing approximately 500 ml of
egg water (EW, 60 mg/l Instant Ocean in deionized water and
0.25 mg/l methylene blue) buffered to a pH of 7.0 and incu-

Component Price (in US$)
Raspberry Pi R©3B 35
Pi camera v2 30
Intel R© MovidiusTM Neural Compute Stick 77
USB hub 8
Total 150

Table 1: Cost of the system broken down by component.

bated at 28.5o C under a 14/10 h light/dark cycle until 7 days
post-fertilization (dpf). The medium was partially refreshed
every other day and any debris was removed to maintain wa-
ter quality.

Automated pose estimation
We built a two-stage deep learning-based processing pipeline:
An initial neural network was used for coarsely detecting the
animal body which was then passed to a second network
for precise pose estimation. We have implemented a single
shot detector (SSD) with MobileNet (Howard et al., 2017)
for producing bounding box predictions around the head of
the animal. MobileNets are a class of efficient convolutional
architectures for embedded vision applications. The entire
pipeline was implemented in Caffe (Jia et al., 2014) and com-
piled to run on Intel R© MovidiusTM Neural Compute Stick.

To produce ground-truth annotations, we used an in-house
shape-based tracker (Guo et al., 2018) which is very accurate
but exceedingly slow (about 5 frames per min on a modern
workstation). Machine outputs were manually inspected and
errors were corrected by hand (corresponding to a fraction of
a percent). We used a total of 10,415 such machine annotated
images, and augmented 5× (application of random brightness
perturbation sampled from a normal distribution on the HSV

https://github.com/serre-lab/rpi-ncs-toolkit
https://github.com/serre-lab/rpi-ncs-toolkit


Figure 3: Sample failure cases. Though these sort of errors
are rare, background artifacts, motion blur and random light-
ing changes can cause failure of the pose estimation system.

Figure 4: A box plot of per-joint estimation errors from our
test data set. The average joint error is 14.33 pixels. Number-
ing starts from the head (1) through to the tail (4).

color space) to yield a total of 62,490 images. We trained the
MobileNet-SSD network from scratch using the RMSProp
optimizer with a learning rate of 5e−4 and weight decay of
5e−5 for a total of 38,000 iterations.

As a post processing step, any bounding box prediction
greater than two standard deviations away from the mean,
calculated using a sliding window of length 30 frames, was
deemed an outlier and removed. Detections were then
smoothed by enforcing temporal continuity via mean filter-
ing using a sliding window of size 10. Evaluation on an anno-
tated video (3,585 frames) of a single held-out animal yielded
a nearly perfect accuracy of 99.7%.

We then implemented a patch-based classification scheme
for fine pose estimation, with C = 5 classes (4 joints and back-
ground). We considered the head, the neck, the midpoint of
the tail, and the tip of the tail as our 4 joints and refer to
them thereafter as joints 1− 4, respectively. A 5-layer con-
volutional architecture was trained with sliding patches of
size 28× 28. We refrained from using any pooling opera-
tion to retain spatial selectivity. Convolutional layers with
stride=2 were used instead with ReLU as an activation func-
tion. The network was trained from scratch using an Adam
Optimizer (Kingma & Ba, n.d.) with a learning rate of 1e−4
and a weight decay of 5e−3. Standard softmax cross-entropy
was used as the loss function. This implementation was done

Figure 5: Profiling distance from the wall of the arena.
(Left) Trajectory from a single individual color coded for
time (blue:start, red:end) (Right) Corresponding distance to
the wall over time.

in Tensorflow (Abadi et al., 2016) and compiled to run on the
Intel Movidius as with the bounding-box detector. Note that
we prefer a patch classification approach to direct coordinates
regression simply because of the ability to obtain multiple
competing hypotheses for every joint location by sampling
from the heatmaps produced. This in turn allows for applica-
tion of explicit structural constraints.

After obtaining the per-pixel joint classification results, we
implemented a simple skeleton constraint to enforce logical
positioning of the joints. Mode seeking from the confidence
values of joint classification was done using the Mean-shift
algorithm (Fukunaga & Hostetler, 1975) for the first three
joints starting from the head. Detection of the tail tip was
done by maximizing the distance from the first three joints
along the medial axis obtained from patches classified as the
tail.

A hand-annotated data set of 5,495 images was created,
with four joint locations per frame. Of this, we used 1,900
images for training our pose estimation model. The remain-
ing 3,595 formed a continuous sequence which was used for
evaluation purposes. Training data samples were augmented
via random image flips and brightness/contrast adjustments.
Sample visual results from our pose estimation pipeline are
shown in Fig. 2, while error cases are show in Fig. 3

We evaluated the pose estimator on our test data set. The
standard euclidean joint error metric was used for pose esti-
mation. A full per-joint box plot of joint errors is shown in
Fig. 4. The average joint error over the full test data set is
14.33 pixels. Following intuition, we observe that it is much
harder to predict the location of the tail since it appears faint
– often blending with the background. Additionally, inaccu-



racy in human annotations may have also contributed to the
increased error observed in the latter two joints. Our method
is robust to minor changes in camera setup, with retraining re-
quired for different image acquisition systems. Also, a more
principled way to introduce structural constraints during pose
estimation is part of our plan for future work.

Our detection and pose estimation pipeline can be utilized
to extract a number of useful behavioral measures. Here, as
proof-of-concept, we demonstrate the extraction of distance
to wall profiles. This is an important metric for assessing thig-
motactic behavior. For example, in caffeine dose-response
relationship analysis proximity to a wall could serve as a re-
liable indicator of anxiety and/or unwillingness to explore.
Fig. 5 shows two examples; one where a larva is freely ex-
ploring the central region of the arena, and the other where
another individual is keeping to the walls.
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