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Face recognition has been a central topic in computer vision for at least two decades

and progress in recent years has been significant. Automated face recognition sys-

tems are now widespread in applications ranging from surveillance to personal com-

puters. In contrast, only a handful of neurobiologically plausible computational

models have been proposed to try to explain the processing of faces in the primate

cortex (e.g., Giese & Leopold, 2005; Jiang et al., 2006), and no such model has been

applied specifically in the context of dynamic faces.

There is a need for an integrated computational theory of dynamic face processing

that could integrate and summarize evidence obtained with di¤erent experimental

methods, from single-cell physiology to fMRI, MEG, and ultimately behavior and

psychophysics. At the same time, physiologically plausible models capable of pro-

cessing real video sequences constitute a plausibility proof for the computational fea-

sibility of di¤erent hypothetical neural mechanisms.

In this review chapter we will first discuss computer vision models for the process-

ing of dynamic faces; these do not necessarily try to reproduce biological data but

may suggest relevant computational principles. We then provide an overview of com-

putational neuroscience models for the processing of static faces and dynamic body

stimuli. We further highlight specific elements from our own work that are likely to

be relevant for the processing of dynamic face stimuli. The last section discusses open

problems and critical experiments from the viewpoint of neural computational

approaches to the processing of dynamic faces.

Computational Models for the Processing of Faces and Bodies

The following section reviews work in computer vision as well as neural and psycho-

logical models for the recognition of static faces. In addition, we discuss neurobiolog-

ical models for the processing of dynamic bodies. It seems likely that some of the

computational principles proposed in the context of these models might also be rele-

vant for the processing of dynamic faces.



Computer Vision Models for the Processing of Dynamic Faces

While a full review of the large body of literature on computer vision systems for the

recognition and detection of static faces would far exceed the scope of this chapter

(see Jain & Li, 2005; Kriegman, Yang, & Ahuja, 2002; Zhao, Chellappa, Rosenfeld,

& Phillips, 2003 for relevant books and reviews), we discuss in the following pages a

number of approaches for the recognition of facial expressions and dynamic facial

stimuli. While these systems do not try to mimic the processing of information in

the visual cortex, they do provide real-world evidence that critical information can

be extracted from dynamic faces beyond the analysis of static frames.

Several computer vision systems have been developed for the recognition of facial

expression based on the extraction of temporal cues from video sequences. First

introduced by Suwa and colleagues (Suwa, Sugie, & Fujimora, 1978) in the 1970s

and later popularized by Mase (Mase, 1991) in the 1990s, systems for the recognition

of facial expressions have progressed tremendously in the past decades (see Fasel &

Luettin, 2003; Pantic & Rothkrant, 2000; Tian, Kanade, & Cohn, 2005 for reviews).

Earlier approaches have typically relied on the computation of local optical flow

from facial features (Black & Yacoob, 1995; Essa, Darrell, & Pentland, 1994; Mase,

1991; Otsuka & Ohya, 1996; Rosenblum, Yacoob, & Davis, 1994) and/or hidden

Markov models (HMMs) to capture the underlying dynamics (Cohen, Sebe, Garg,

Chen, & Huang, 2003; Otsuka & Ohya, 1996). More recent work (Pantic & Patras,

2006) has relied on the dynamics of individual facial points estimated using modern

tracking algorithms. Another line of work (Yang, Liu, & Metaxas, 2009; Zhao et al.,

2003) involves the extraction of image features shown to work well for the analysis of

static faces (Ahonen, Hadid, & Pietikaine, 2006; Viola & Jones, 2001) across multiple

frames.

Several behavioral studies (see for example chapters 2 and 4) have suggested that

people might be able to extract idiosyncratic spatiotemporal signatures of a person’s

identity based on body and facial motion. An early approach that exploits the char-

acteristic temporal signature of faces based on partially recurrent neural networks

trained over sequences of facial images was first introduced by Gong, Psarrou, Kat-

soulis, and Palavouzis (1994). Initial experiments conducted by Luettin and col-

leagues suggested that spatiotemporal models (HMMs) trained on sequences of lip

motion during speech could be useful for speaker recognition (Luettin, Thacker, &

Beet, 1996). However, beyond this early experiment, the use of spatiotemporal cues

for the identification of people in computer vision has remained relatively unexplored

(Gong, McKenna, & Psarrou, 2000).

Overall, the success of computer vision systems for identifying people (i.e., face

recognition) in video sequences, as opposed to static faces, has been more moderate

(e.g., Edwards, Taylor, & Cootes, 1998; Lee, Ho, Yang, & Kriegman, 2003; Tistar-

elli, Bicego, & Grosso, 2009; Yamaguchi, Fukui, & Maeda, 1998). In fact, the idea of
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exploiting video sequences for the recognition of faces was almost completely aban-

doned after it was concluded, from the face recognition vendor test (Phillips et al.,

2002) (which o¤ers an independent assessment of the performance of some of the

leading academic and commercial face recognition systems), that the improvement

from using video sequences over still images for face identification applications was

minimal (Phillips et al., 2003). Clearly, more work needs to be done.

In general, one of the ways by which approaches for the recognition of faces could

benefit from the use of video sequences is via the tracking of the face. Tracking for

the pose of a face can be used to restrict the search for matches between an image

template and a face model across multiple views around expected values, thus

reducing the chances of false maxima. In most approaches however, tracking and

recognition remain separate processes and the recognition phase usually relies on still

images. Relatively few systems have been described that can exploit the temporal

continuity and constancy of video sequences. For instance, Li and colleagues (Li,

Shaogang Gong, & Heather Liddell, 2001) have described a face recognition system

in which the parameters of a 3D point distribution model are estimated using a Kal-

man filter, e¤ectively tracking parameters and enforcing smoothness over time.

More recently, two approaches have been described that systematically investigate

the role of temporal information in video-based face recognition applications. Zhou

et al. investigated the recognition of human faces in video sequences using a gallery

of both still and video images within a probabilistic framework (Zhou, Krueger, &

Chellappa, 2003). In their approach, a time series state-space model is used to extract

a spatiotemporal signature and simultaneously characterize the kinematics and iden-

tity of a probe video. Recognition then proceeds via marginalization over the motion

vector to yield a robust estimate of the posterior distribution of the identity variable

using importance-sampling algorithms. Finally, recent work by Zhang and Martinez

(2006) convincingly shows that the use of video sequences over still images may help

alleviate some of the main problems associated with face recognition (i.e., occlusions,

expression and pose changes, as well as errors of localization).

Biological Models for the Perception of Static Faces

Initial biologically inspired computational models for the processing of human faces

have focused on the direct implementation of psychological theories. Classically,

these theories have assumed abstract cognitive representations such as ‘‘face spaces,’’

interpreting faces as points in abstract representation spaces. It has been typically

assumed that such points are randomly distributed, for example, with a normal dis-

tribution (Valentine, 1991). A central discussion in this context has been whether

faces are represented as points in a fixed representation space, which is independent

of the class of represented faces (example-based coding), or if faces are encoded in

relationship to a norm or average face, which represents the average features of a
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large representative set of faces (norm-based or norm-referenced encoding) (Leopold,

O’Toole, Vetter, & Blanz, 2001; Rhodes, Brennan, & Carey, 1987; Rhodes & Je¤ery,

2006). Several recent experimental studies have tried to di¤erentiate between these

two types of encoding (Lo¿er, Yourganov, Wilkinson, & Wilson, 2005; Rhodes &

Je¤ery, 2006; Tsao & Freiwald, 2006). Contrary to norm-based representations,

which are characterized by a symmetric organization of the face space around a

norm face, example-based representations do not assume such a special role for the

average face. Refinements of such face space models have been proposed that take

into account varying example densities in the underlying pattern spaces. For exam-

ple, it has been proposed that such density variations could be modeled by assuming

a Veronoi tessellation of the high-dimensional space that forms the basis of percep-

tual judgments (Lewis & Johnston, 1999).

Other models have exploited connectionist architectures in order to account for the

recognition and naming of faces (Burton & Bruce, 1993). More recent models work

on real pixel images, thus deriving the feature statistics directly from real-world data.

A popular approach has been the application of Principal Component Analysis,

inspired by the eigenface approach in computer vision (Sirovich & Kirby, 1997;

Turk & Pentland, 1991). It has been shown that neural network classifiers based on

such eigenfeatures are superior to the direct classification of pixel images (Abdi, Val-

entin, Edelman, & O’Toole, 1995). At the same time, psychological studies have tried

to identify which eigencomponents are relevant for the representation of individual

face components (such as gender or race) (e.g., O’Toole, De¤enbacher, Valentin, &

Abdi, 1994). More advanced models have applied shape normalization prior to

the computation of the eigencomponents (Hancock, Burton, & Bruce, 1996). Such

approaches closely resemble methods in computer vision that ‘‘vectorize’’ classes of

pictures by establishing correspondences between them automatically and separating

shape from texture (e.g., Blanz & Vetter, 1999; Lanitis, Taylor, & Cootes, 1997).

Eigenfaces have been combined with neural network architectures, including multi-

layer perceptrons and radial basis functions (RBF) networks (e.g., Valentin, Abdi,

& Edelman, 1997a; Valentin, Abdi, Edelman, & O’Toole, 1997b). Another class of

models has been based on the computation of features from Gabor filter responses,

including a first filtering stage that is similar to the early processing in the visual cor-

tex (Burton, Bruce, & Hancock, 1999; Dailey & Cottrell, 1999; Dailey, Cottrell,

Padgett, & Adolphs, 2002).

Only recently have models been developed that take into account detailed princi-

ples derived from the visual cortex. One example is the work by Jiang and colleagues

(Jiang et al., 2006) who have applied a physiologically inspired hierarchical model

(Riesenhuber & Poggio, 1999) for the position and scale-invariant recognition of

shapes to faces, in order to test whether face processing requires the introduction

of additional principles compared with the processing of general shapes. This model
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also reproduces a variety of electrophysiological results on the tuning of neurons in

areas V4 and IT (e.g., Riesenhuber & Poggio, 1999) and results in quantitative pre-

dictions that are in good agreement with behavioral and fMRI data (Jiang et al.,

2006; Riesenhuber, Jarudi, Gilad, & Sinha, 2004). Our own work discussed in this

chapter is based on closely related model architectures.

Biological Models for the Perception of Body Movement

Here we briefly review theoretical models for the recognition of body movements,

under the assumption that they might contribute important mechanisms that also ap-

ply to the processing of dynamic faces. This idea seems consistent with the fact that

face and body-selective regions are often located in close neighborhood in the visual

cortex. In monkeys, neurons selective for faces have been found in the superior tem-

poral sulcus and the temporal cortex (e.g., Desimone, Albright, Gross, & Bruce,

1984; Pinsk et al., 2009; Pinsk, DeSimone, Moore, Gross, & Kastner, 2005; Tsao,

Freiwald, Knutsen, Mandeville, & Tootell, 2003). (See chapters 8, 9, and 11 for fur-

ther details.) The same regions contain neurons that are selective for body shapes and

movements (Barraclough, Xiao, Oram, & Perrett, 2006; Bruce, Desimone, & Gross,

1986; Oram & Perrett, 1996; Puce & Perrett, 2003; Vangeneugden, Pollick, & Vogels,

2008). Similarly, areas selective for the recognition of faces, bodies, and their move-

ments have been localized in the STS and the temporal cortex of humans, partially in

close spatial neighborhood (Grossman & Blake, 2002; Kanwisher, McDermott, &

Chun, 1997; Peelen & Downing, 2007; Pinsk et al., 2009, 2005).

To our knowledge, no physiologically plausible models have been developed that

account for the properties of neurons that are selective for dynamic face stimuli. In

contrast, several exist that try to account for neural mechanisms involved in the pro-

cessing of dynamic body stimuli (Escobar, Masson, Vieville, & Kornprobst, 2009;

Giese & Poggio, 2003; Jhuang, Serre, Wolf, & Poggio, 2007; Lange & Lappe, 2006;

Schindler, Van Gool, & de Gelder, 2008).

These models are based on hierarchical neural architectures, including detectors

that extract form or motion features from image sequences. Position and scale invari-

ance has been accounted for by pooling neural responses along the hierarchy. It has

been shown that such models reproduce several properties of neurons that are selective

for body movements and behavioral and brain imaging data (Giese & Poggio, 2003).

Recent work proves the high computational performance of biologically inspired

architectures for the recognition of body movement, which lies in the range of the

best nonbiological algorithms in computer vision (Escobar et al., 2009; Jhuang et al.,

2007). Architectures of this type will be proposed in the following discussion as a basic

framework for the development of a neural model for the processing of dynamic faces.

A central question in the context of such models has been how form and motion

processing contribute to the recognition of body motion. Consistent with experimental
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evidence (Casile & Giese, 2005; Thurman & Grossman, 2008; Vangeneugden et al.,

2008), some models have proposed an integration of form and motion information,

potentially in the STS (Giese & Poggio, 2003; Peuskens, Vanrie, Verfaillie, & Orban,

2005). Conversely, some studies have tried to establish that at least the perception

of point-light biological motion is exclusively based on form processing (Lange &

Lappe, 2006). Since facial and body motion generate quite di¤erent optic flow

patterns (e.g., with respect to their smoothness and the occurrence of occlusions),

it is not obvious whether the relative influences of form and motion are similar for

the processing of dynamic faces and bodies. The study of the relative influences

of form and motion in the processing of face stimuli is thus an interesting problem,

which relates also to the question of how di¤erent aspects of faces, such as static

versus changeable aspects (identity versus facial expression), are processed by dif-

ferent cortical subsystems (Bruce & Young, 1986; Haxby, Ho¤man, & Gobbini,

2000).

Another neural system for the processing of body movement has been found in the

parietal and premotor cortex on macaque monkeys (e.g., Fogassi et al., 2005; Gal-

lese, Fadiga, Fogassi, & Rizzolatti, 1996; Rizzolatti, Fogassi, & Gallese, 2001). A

particularity of these areas is that they contain mirror neurons that respond, not

only during visual stimulation, but also during the execution of motor actions. An

equivalent of the mirror neuron system has also been described in humans (Binkofski

& Buccino, 2006; Decety & Grezes, 1999). This observation has stimulated an exten-

sive discussion in cognitive and computational neuroscience as well as robotics and

even philosophy. A central question is how the recognition of actions, and especially

imitatible actions (Wilson & Knoblich, 2005), might benefit from the use of motor

representations. An important hypothesis in this context is that the visual recognition

of actions might be accomplished by an internal simulation of the underlying motor

behavior (Prinz, 1997; Rizzolatti et al., 2001). A number of computational models in

robotics and neuroscience have tried to implement this principle (e.g., Erlhagen,

Mukovskiy, & Bicho, 2006; Miall, 2003; Oztop, Kawato, & Arbib, 2006; Wolpert,

Doya, & Kawato, 2003).

It has been proposed that a similar process—the internal simulation of somato-

visceral states—and potentially even motor commands might also be involved in the

recognition of emotional facial expressions (e.g., van der Gaag, Minderaa, & Key-

sers, 2007). A close interaction between perceptual and motor representations of

facial movements is also suggested by the phenomenon of facial mimicry, i.e., the

stimulation of electric muscle responses by the observation of emotional pictures of

faces (see chapter 11). From a theoretical point of view, these observations raise

a question about the exact nature of this internal simulation: Does it, for example,

reflect the spatial and temporal structure of facial actions or is it more abstract, e.g.,

in terms of emotional states?
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Basic Neural Architecture

In this section we present a basic neural architecture that is consistent with many ex-

perimental results on the recognition of shapes and motion patterns, and even of

static pictures of faces. The underlying model formalizes common knowledge about

crucial properties of neurons on di¤erent levels of the ventral and dorsal visual path-

way (Giese & Poggio, 2003; Jiang et al., 2006; Riesenhuber & Poggio, 1999). In ad-

dition, architectures of this type have been tested successfully with real-world form

and motion stimuli (Jhuang et al., 2007; Serre, Wolf, Bileschi, Riesenhuber, & Pog-

gio, 2007). This makes them interesting as a basis for the development of biological

models for the processing of dynamic faces.

Feedforward Hierarchical Models of the Ventral Stream of the Visual Cortex

The processing of shape information in the cortex is thought to be mediated by the

ventral visual pathway running from V1 (Hubel & Wiesel, 1968) through extrastriate

visual areas V2 and V4 to the IT (Perrett & Oram, 1993; Tanaka, 1996), and then to

the prefrontal cortex (PFC), which is involved in linking perception to memory and

action. Over the past decade, a number of physiological studies in nonhuman pri-

mates have established several basic facts about the cortical mechanisms of object

and face recognition (see also chapters 7 and 8). The accumulated evidence points

to several key features of the ventral pathway. Along the hierarchy from V1 to the

IT, there is an increase in invariance with respect to changes in position and scale,

and in parallel, an increase in receptive field size and the complexity of the optimal

stimuli for the neurons (Logothetis & Sheinberg, 1996; Perrett & Oram, 1993).

One of the first feedforward models for object recognition, Fukushima’s Neocog-

nitron (Fukushima, 1980), constructed invariant object representations using a hier-

archy of stages by progressively integrating convergent inputs from lower levels.

Modern feedforward hierarchical models fall into di¤erent categories: neurobiolog-

ical models (e.g., Mel, 1997; Riesenhuber & Poggio, 1999; Serre, Kreiman et al.,

2007; Ullman, Vidal-Naquet, & Sali, 2002; Wallis & Rolls, 1997), conceptual pro-

posals (e.g., Hubel & Wiesel, 1968; Perrett & Oram, 1993), and computer vision

systems (e.g., Fukushima, 1980; LeCun, Bottou, Bengio, & Ha¤ner, 1998). These

models are simple and direct extensions of the Hubel and Wiesel simple-to-complex

cell hierarchy.

One specific implementation of this class of models (Serre et al., 2005; Serre, Krei-

man et al., 2007) is the following: The model takes as an input a gray-value image

that is first analyzed by a multidimensional array of simple (S1) units which, like cor-

tical simple cells, respond best to oriented bars and edges. The next C1 level corre-

sponds to striate complex cells (Hubel & Wiesel, 1968). Each of the complex C1

units receives the outputs of a group of simple S1 units with the same preferred
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orientation (and two opposite phases) but at slightly di¤erent positions and sizes (or

peak frequencies). The result of the pooling over positions and sizes is that C1 units

become insensitive to the location and scale of the stimulus within their receptive

fields, which is a hallmark of cortical complex cells. The parameters of the S1 and

C1 units were adjusted to match as closely as possible the tuning properties of V1

parafoveal simple and complex cells (receptive field sizes, peak spatial frequency as

well as frequency and orientation bandwidth).

Feedforward theories of visual processing, and this model in particular, are based

on extending these two classes of simple and complex cells to extrastriate areas. By

alternating between S layers of simple units and C layers of complex units, the model

achieves a di‰cult tradeo¤ between selectivity and invariance. Along the hierarchy,

at each S stage, simple units become tuned to features of increasing complexity (e.g.,

from single oriented bars to combinations of oriented bars to form corners and fea-

tures of intermediate complexities) by combining a¤erents of C units with di¤erent

selectivities (e.g., units tuned to edges at di¤erent orientations). For instance, at the

S2 level (respectively, S3), units pool the activities of retinotopically organized a¤er-

ent C1 units (respectively, C2 units) with di¤erent orientations (di¤erent feature

tuning), thus increasing the complexity of the representation from single bars to com-

binations of oriented bars forming contours or boundary conformations. Conversely,

at each C stage, complex units become increasingly tolerant to 2D transformations

(position and scale) by combining a¤erents (S units) with the same selectivity (e.g.,

a vertical bar) but slightly di¤erent positions and scales.

This class of models seems to be qualitatively and quantitatively consistent with

(and in some cases actually predicts, several properties of subpopulations of cells in

V1, V4, the IT, and the PFC as well as fMRI and psychophysical data. For instance,

the described model predicts the maximum computation by a subclass of complex

cells in the primary visual cortex (Lampl, Ferster, Poggio, & Riesenhuber, 2004)

and area V4 (Gawne & Martin, 2002). It also shows good agreement (Serre et al.,

2005) with other data in V4 on the tuning for two-bar stimuli and for boundary con-

formations (Pasupathy & Connor, 2001; Reynolds, Chelazzi, & Desimone, 1999).

The IT-like units of the model exhibit selectivity and invariance that are very similar

to those of IT neurons (Hung, Kreiman, Poggio, & DiCarlo, 2005) for the same set

of stimuli, and the model helped explain the tradeo¤ between invariance and selectiv-

ity observed in the IT in the presence of clutter (Zoccolan, Kouh, Poggio, & DiCarlo,

2007). Also, the model accurately matches the psychophysical performance of human

observers for rapid animal versus nonanimal recognition (Serre, Oliva, & Poggio,

2007), a task that is not likely to be strongly influenced by cortical backprojections.

This implies that such models might provide a good approximation of the first few

hundred milliseconds of visual shape processing, before eye movements and shifts of

attention become activated.
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Are Faces a Special Type of Object?

The question of how faces are represented in the cortex has been at the center of an

intense debate (see Gauthier & Logothetis, 2000; Tsao & Livingstone, 2008 for recent

reviews). Faces are of high ecological significance and it is therefore not surprising

that a great deal of neural tissue seems to be selective for faces both in humans

(Kanwisher et al., 1997) and in monkeys (Moeller, Freiwald, & Tsao, 2008; Tsao &

Livingstone, 2008). On the one hand, electrophysiological studies (Baylis, Rolls,

& Leonard, 1985; Perrett, Rolls, & Caan, 1982; Rolls & Tovee, 1995; Young &

Yamane, 1992) have suggested that faces, like other objects, are represented by the

activity of a sparse population of neurons in the inferotemporal cortex. Conversely,

a theme that has pervaded the literature is that faces might be special. For instance,

the so-called face inversion e¤ect [i.e., the fact that the inversion of faces a¤ects

performance to a much greater extent than inversion of other objects (Carey &

Diamond, 1986; Yin, 1969)] suggested that face processing may rely on com-

putational mechanisms such as configurational processing; this would seem incom-

patible with the shape-based models described earlier, which are based on a loose

collection of image features and do not explicitly try to model the geometry of

objects.

A model (Riesenhuber & Poggio, 1999) that is closely related to that described

earlier was shown to account for both behavioral (Riesenhuber et al., 2004) and

imaging data (Jiang et al., 2006) on the processing of still faces in the visual cortex.

The model predicts that face discrimination is based on a sparse representation

of units selective for face shapes, without the need to postulate additional, ‘‘face-

specific’’ mechanisms. In particular, the model was used to derive and test predic-

tions that quantitatively link model FFA face neuron tuning, neural adaptation

measured in an fMRI rapid adaptation paradigm, and face discrimination perfor-

mance. One of the successful predictions of this model is that discrimination per-

formance should become asymptotic as faces become dissimilar enough to activate

di¤erent neuronal populations. These results are in good agreement with imaging

studies that failed to find evidence for configurational mechanisms in the FFA

(Yovel & Kanwisher, 2004).

Feedforward Hierarchical Models of the Dorsal Stream

The processing of motion information is typically thought of as being mainly accom-

plished by the dorsal stream of the visual cortex. Whereas the computational mecha-

nisms of motion integration in lower motion-selective areas (see Born & Bradley,

2005; Smith & Snowden, 1994 for reviews) have been extensively studied, relatively

little is known about the processing of information in higher areas of the dorsal

stream. It has been proposed that organizational and computational principles may

be similar to those observed in the ventral stream (i.e., a gradual increase in the
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complexity of the preferred stimulus and invariance properties along the hierarchy)

(Essen & Gallant, 1994; Saito, 1993).

Building on these principles, Giese and Poggio have proposed a model for motion

recognition that consists of a ventral and a dorsal stream (Giese & Poggio, 2003).

Their simulations demonstrated that biological motion and actions can be recog-

nized, in principle, by either stream alone, via the detection of temporal sequences

of shapes in the ventral stream of the model, or by recognizing specific complex optic

flow patterns that are characteristic for action patterns in the dorsal stream. The

architecture of the ventral stream follows closely the architecture of the models

described earlier (Riesenhuber & Poggio, 1999), with the addition of a special recur-

rent neural mechanism on the highest level that makes the neural units’ responses se-

lective for sequential temporal order. The dorsal stream applies the same principles

to neural detectors for motion patterns with di¤erent levels of complexity [such as

local and opponent motion in the original model, or complex spatially structured

optic flow patterns that are learned from training examples (Jhuang et al., 2007;

Sigala, Serre, Poggio, & Giese, 2005]. The model reproduced a variety of experiments

(including psychophysical, electrophysiological, and imaging results) on the recogni-

tion of biological motion from point-light and full-body stimuli. Subsequent work

showed that the dorsal stream is particularly suited for generalization between full-

body and point-light stimuli, and produced reasonable recognition results even for

stimuli with degraded local motion information, which was previously interpreted as

evidence that perception of biological motion is exclusively based on form features

(Casile & Giese, 2005).

This line of work has recently been extended by the inclusion of simple learning

mechanisms for middle temporal-like units (Jhuang et al., 2007; Sigala et al., 2005),

making it possible to adapt the neural detectors in intermediate stages of the model

to the statistics of natural video sequences. The validation of this model showed that

the resulting architecture was competitive with state-of-the-art computer vision sys-

tems for the recognition of human actions. This makes such models interesting for

the recognition of other classes of dynamic stimuli, such as dynamic faces.

Extensions of the Basic Architecture for the Processing of Dynamic Faces

The core assumption in this chapter is that the recognition of dynamic facial expres-

sions might exploit computational mechanisms similar to those used to process static

objects or body movements. This does not necessarily imply that the underlying neu-

ral structures are shared, even though such sharing seems likely with respect to lower

and midlevel visual processing. In the following discussion we present a number of

extensions of the framework discussed in the preceding section that seem necessary

in order to develop models for the processing of dynamic faces. In particular, we

speculate that the processing of dynamic face stimuli involves a complex interaction
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between motion cues from the dorsal stream and shape cues from the ventral stream

(as discussed in the previous sections of this chapter).

Skeleton Model for the Processing of Dynamic Faces

Following the principles that have been successful in explaining the recognition of

static objects and faces as well as dynamic body movements, figure 13.1 provides a

sketch of how motion and shape cues may be integrated within a model for the pro-

cessing of dynamic faces. The model extracts characteristic features of dynamic facial

expressions through two hierarchical pathways that extract complex form and mo-

tion features. The highest levels of these two streams are defined by complex pattern

detectors that have been trained with typical examples of dynamic face patterns.

Within this framework it is possible to make the form and also the motion pathway

selective for temporal sequences by the introduction of asymmetric lateral connec-

tions between high-level units tuned to di¤erent keyframes of a face sequence (as

described in Giese & Poggio, 2003). Whether such sequence selectivity is critical

in the recognition of dynamic faces is still an open question. In the proposed model,

the information from the form and motion pathways is integrated at the highest

hierarchy level within model units that are selective for dynamic facial expressions.

Again, it remains an open question for experimental research to demonstrate the

existence of face-selective neurons that are selectively tuned for dynamic aspects (see

also chapter 8).

We have conducted preliminary experiments with a part of the proposed architec-

ture using videos of facial expressions as stimuli. Testing the model of the dorsal

stream described earlier (Jhuang et al., 2007) on a standard computer vision database

(Dollar, Rabaud, Cottrell, & Belongie, 2005) that contains six facial expressions

(anger, disgust, fear, joy, sadness, and surprise), we found that a small population

of about 500 MT/MST-like motion-sensitive model units were su‰cient for a reliable

classification of these facial expressions (model performance: 93.0% versus 83.5% for

the system by Dollar et al., 2005). These MT/MST-like units combine a¤erent inputs

from ‘‘V1’’ model units that are tuned to di¤erent directions of motion. After a brief

learning stage using dynamic face sequences, these units become selective for space-

time facial features such as the motion of a mouth during a smile or the raising of an

eyebrow during surprise. It seems likely that shape cues from the ventral stream

would also play a key role, if not even a dominant role, in the processing of dynamic

faces (see chapter 4). However, the exact integration of motion and form cues can

only be determined from future more detailed experimental evidence.

Extension for Norm-Referenced Encoding

As discussed in the second section of this chapter, several experiments on the process-

ing of static pictures of faces have suggested a relevance of norm-referenced encoding

for face processing, and potentially even for the representation of other classes of
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Figure 13.1
Neural model for the processing of dynamic face stimuli. Form and motion features are extracted in two
separate pathways. The addition of asymmetric recurrent connections at the top levels makes the units se-
lective for temporal order. The highest level consists of neurons that fuse form and motion information.
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objects (Kayaert, Biederman, & Vogels, 2005; Leopold, Bondar, & Giese, 2006; Lof-

fler et al., 2005; Rhodes & Je¤ery, 2006; Tsao & Freiwald, 2006). All models dis-

cussed so far are example-based. They assume neural units whose tuning depends

on the position of a stimulus in feature space, independently of the overall stimulus

statistics. An example is units with Gaussian tuning (Riesenhuber & Poggio, 1999;

Serre et al., 2005) with centers defined by individual feature vectors that correspond

to training patterns.

Conversely, for norm-referenced encoding, the tuning of such units would depend,

not only on the actual stimulus, but also on a norm stimulus (average face), resulting

in a special symmetry of the tuning about this norm stimulus. The model architecture

proposed before can be easily extended to implement ‘‘norm-referenced encoding,’’

and it seems that such an extension might be helpful in accounting for the tuning

properties of face-selective neurons in the macaque IT area (Giese & Leopold, 2005).

Figure 13.2 shows the results of an electrophysiological experiment (Leopold et

al., 2006) that tested the tuning of face-selective neurons in area IT using face stimuli

that had been generated by morphing among three-dimensional scans of humans

(Blanz & Vetter, 1999). Specifically, morphs between four example faces (F1, F2,

F3, and F4) and an average face computed from fifty faces were presented to the ani-

mals (panel A). Single-cell and population responses showed a clear tendency of the

activity of individual neural units to vary monotonically with the distance of the test

stimulus from the average face in the face space (panel B). We then tried to repro-

duce this result with an example-based model that was basically a simplified version

of the model for the ventral stream, as discussed in detail in the previous section. The

model consisted of a hierarchy of ‘‘simple’’ and ‘‘complex’’ units to extract oriented

contours and midlevel feature detectors that were optimized by PCA based on the

available training patterns. Units at the highest level were Gaussian radial basis func-

tions whose centers were defined by the feature vectors of training faces from the

data basis, which is consistent with the example-based models discussed earlier. (See

Giese & Leopold, 2005 for further details.)

Although this model achieved robust face recognition with a realistic degree of se-

lectivity, and matching basic statistical parameters of the measured neural responses,

it failed to reproduce the monotonic trends of the tuning curves with respect to the

distance of the stimuli from the average face that was observed in the experiment

(figure 13.2c). This deviation from the data was quite robust against changes in the

parameters of the model, or even structural variations like the number of spatial

scales. This points toward a fundamental di¤erence with respect to relevant neural

encoding principles.

In order to verify this hypothesis, we implemented a second version of the model

that included a special neural mechanism that approximates norm-referenced encod-

ing, and which replaced the units with Gaussian tuning in the exemplar-based model.
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Figure 13.2
Responses of face-selective neurons in area IT and simulation results from two model variants implement-
ing example-based and norm-referenced encoding. (a). Stimuli generated by morphing between the average
face and four example faces (F1, F2, F3, and F4). Pictures outside the sphere indicate facial caricatures
that exaggerate features of the individual example faces. The identity level specifies the location of face
stimuli along the line between the average face and the individual example faces (0 corresponding to the
average face and 1 to the original example face). (b). Responses of eighty-seven face-selective neurons (nor-
malized average spike rates within an interval 200–300 ms after stimulus onset) in area IT of a macaque
monkey. Di¤erent lines indicate the population averages computed separately for di¤erent identity levels
and for the example face that elicited, respectively, the strongest, second-strongest etc., and the lowest
response. Asterisks indicate significant monotonic trends ðp < 0:05Þ. (c). Normalized responses of face-
selective neurons for the model implementing example-based encoding plotted in the same way as the re-
sponses of the real neurons in panel b. (d). Normalized responses of the face-selective neurons for the
model implementing norm-referenced encoding (conventions as in panel b).
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The key idea for the implementation of norm-referenced encoding is to obtain an

estimate for the feature vector uðtÞ that corresponds to the norm stimulus (average

face) by averaging over the stimulus history. Once this estimate has been computed,

neural detectors that are selective for the di¤erence between the actual stimulus input

from the previous layer rðtÞ and this estimate can be easily constructed. The underly-

ing mechanism is schematically illustrated in figure 13.3a.

An estimate of the feature vector ûuðtÞ that corresponds to the norm stimulus is

computed by ‘‘integrator neurons’’ (light gray in figure 13.3a), which form a (very

slow-moving) average of the input signal rðtÞ from the previous layer over many

stimulus presentations. Simulations showed that for random presentation of stimuli

from a fixed set of faces, this temporal average provides a su‰ciently accurate esti-

mate of the feature vector that corresponds to the real average face. The (vectorial)

di¤erence zðtÞ ¼ rðtÞ � ûuðtÞ between this estimate and the actual stimulus input is

computed by a second class of neurons (indicated in white).

The last level of the proposed circuit is given by face-selective neurons (or small

networks of neurons) whose input signal is given by the di¤erence vector zðtÞ (indi-
cated by dark gray in figure 13.3). The tuning functions of these neurons were given

by the function

yk ¼ gkðzÞ@ jzj znk

jzj þ 1

� �u
; ð13:1Þ

where the first term defines a linear dependence of the output on the length of the

distance vector and where the second term can be interpreted as a direction tuning

function in the high-dimensional feature space (the unit vector nk determining the

preferred direction, and the positive parameter u controlling the width of the direc-

tion tuning). While at first glance, this function does not look biologically plausible,

it turns out that for u ¼ 1 (a value leading to a good approximation of the physiolog-

ical data), it can be approximated well by the function

yk ¼ gkðzÞ@ znk þ jzj ¼ ½z�þðnk þ 1Þ þ ½�z�þðnk � 1Þ: ð13:2Þ

In this formula ½:�þ corresponds to a linear threshold function ½x�þ ¼ maxðx; 0Þ, and
function (13.2) can be implemented with a simple physiologically plausible two-layer

neural network with linear threshold units that is sketched in figure 13.3b.

A quantitative comparison between simulation and real experimental data, using

the stimuli and the same type of analysis for the real and the modeled neural data,

shows a very good agreement, as shown in figure 13.2d. Specifically, the model repro-

duces even the number of significant positive and negative trends that were observed

in the real data.

This result shows that the proposed architecture can be extended to include norm-

referenced encoding without much additional e¤ort and without making biologically
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Figure 13.3
Neural circuits implementing norm-referenced encoding. (a). Basic circuit deriving an estimate of the fea-
ture vector that corresponds to the norm stimulus by averaging and computing the di¤erence between the
actual input and this estimate. The di¤erence vector provides the input to the face-selective neurons. (b).
Implementation of the tuning function of the face-selective neurons by a two-layer linear threshold net-
work. The unit vectors nk define the tuning of the units in the high-dimensional input space (for details,
see text).
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implausible assumptions. In addition, the proposed circuit can be reinterpreted in a

statistical framework as a form of predictive encoding where the face units represent

the deviations from the most likely expected stimulus, which is the average face if no

further a priori information is given. Predictive coding has been discussed extensively

as an important principle for visual processing and especially for object and action

recognition (e.g., Friston, 2008; Rao & Ballard, 1997).

Other Missing Components

The model components and principles discussed in this chapter are far from com-

plete, and it seems likely that an architecture that captures all fundamental aspects

of the neural processing of dynamic facial expressions will require a variety of addi-

tional elements. A few of such principles are listed in the following discussion.

Cortical Feedback The proposed model has primarily a feedforward architecture. It

has been shown that in object recognition, such models capture important properties

of immediate recognition (in the first 200 ms after stimulus presentation) (Serre,

Oliva et al., 2007). For longer stimulus presentations, which is typical for complex

dynamic patterns, top-down e¤ects need to be taken into account. This requires the

inclusion of top-down connections and attentional e¤ects in the model, which may be

particularly important for fine discrimination tasks such as face identification. Over-

all, the proposed model has been extensively tested for the classification of objects

(including faces). Yet vision is much more than categorization because it involves

interpreting an image (for faces, this may take the form of inferring the age, gender,

and ethnicity of a person, or physical attributes such as attractiveness or social sta-

tus). It is likely that the feedforward architectures described in this chapter will be

insu‰cient to match the level of performance of human observers on some of these

tasks and that cortical feedback and inference mechanisms (Lee & Mumford, 2003)

may play a key role.

Attentional Mechanisms Hierarchical architectures that are similar to the proposed

model have been extended with circuits for attentional modulation (e.g., Deco &

Rolls, 2004; Itti & Koch, 2001). Inclusion of attention in models for dynamic face

recognition seems to be crucial since faces have been shown to capture attention

(e.g., Bindemann, Burton, Hooge, Jenkins, & de Haan, 2005) and the recognition of

facial expressions interacts in a complex way with attention (e.g., Pourtois & Vuil-

leumier, 2006).

Interaction with Motor Representations and Top-Down Influences of Internal Emotional

States These are other potential missing elements. The model described here focuses

exclusively on purely visual aspects of facial expressions. The influence of motor
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representations could be modeled by a time-synchronized modulation by predictions

of sensory states from dynamically evolving predictive internal motor models (e.g.,

Wolpert et al., 2003). Alternatively, the sensitivity for visual features consistent with

specific motor patterns or emotional states might be increased in a less specific man-

ner, similar to attentional modulation without a detailed matching of the temporal

structure. Detailed future experiments might help to decide among computational

alternatives.

Discussion

In this chapter we have described computational mechanisms that in our view could

be important for the processing of dynamic faces in biological systems. Since at pres-

ent no physiologically plausible model for the processing of such stimuli exists, we

have reviewed work from di¤erent disciplines: computer vision models for the recog-

nition of dynamic faces (see also chapters 12 and 14), and biologically inspired mod-

els for the processing of static faces and full-body movements. In addition, we have

presented a physiologically plausible core architecture that has been shown previ-

ously to account for many experimental results on the recognition of static objects

and faces and dynamic bodies. In addition, our work demonstrates that this archi-

tecture reaches performance levels for object and motion recognition that are com-

petitive with state-of-the-art computer vision systems. We suggest that this basic

architecture may constitute a starting point for the development of quantitative phys-

iologically inspired models for the recognition of dynamic faces.

As for other work in theoretical neuroscience, the development of successful mod-

els for the recognition of dynamic faces will depend critically on the availability of

conclusive and constraining experimental data. Although the body of experimental

data in this area is continuously growing (as shown by the chapters in the first two

parts of this book), the available data are far from su‰cient to decide about even

the most important computational mechanisms of the processing of dynamic faces.

Questions that might be clarified by such experiments include:

� How much overlap is there between cortical areas involved in the processing of

static versus dynamic faces?

� How do form and motion cues contribute to the recognition of dynamic faces?

� Is temporal order-selectivity crucial for the processing of facial expressions, and

which neural mechanisms implement such sequence selectivity?

� Are neurons tuned to dynamic sequences of face images such as heads rotating in

3D also involved in the problem of (pose) invariant recognition?

� Is there a direct coupling between perceptual and motor representations of facial

movements, and what are the neural circuits that implement this coupling?
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� How do other modalities, such as auditory or haptic cues, modulate the visual

processing of dynamic faces?

The clarification of such questions will likely require the integration of di¤erent ex-

perimental methods, including psychophysics, functional imaging, lesion studies, and

most important, single-cell physiology. An important function for computational

models like the ones discussed in this chapter is to quantitatively link the results

obtained with various experimental methods and to test the computational feasibility

of explanations in the context of real-world stimuli with realistic levels of complexity.

Only computational mechanisms that comply with the available data, and which are

appropriate for reaching su‰cient performance levels with real-world stimuli seem

promising as candidates for an explanation of the biological mechanisms that under-

lie the processing of dynamic faces.

References

Abdi, H., Valentin, D., Edelman, B., & O’Toole, A. J. (1995). More about the di¤erence between men and
women: Evidence from linear neural networks and the principal-component approach. Perception, 24(5),
539–562.

Ahonen, T., Hadid, A., & Pietikaine, M. (2006). Face description with local binary patterns: Application
to face recognition. IEEE Trans Pattern Anal Machine Intell, 28(12), 2037–2041.

Barraclough, N. E., Xiao, D., Oram, M. W., & Perrett, D. I. (2006). The sensitivity of primate STS neu-
rons to walking sequences and to the degree of articulation in static images. Prog Brain Res, 154, 135–148.

Baylis, G. C., Rolls, E. T., & Leonard, C. M. (1985). Selectivity between faces in the responses of a popu-
lation of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Res, 342(1), 91–102.

Bindemann, M., Burton, A. M., Hooge, I. T., Jenkins, R., & de Haan, E. H. (2005). Faces retain atten-
tion. Psychonom Bull Rev, 12, 1048–1053.

Binkofski, F., & Buccino, G. (2006). The role of ventral premotor cortex in action execution and action
understanding. J Physiol Paris, 99(4–6), 396–405.

Black, M. J., & Yacoob, Y. (1995). Tracking and recognizing rigid and non-rigid facial motions using local
parametric models of image motion. In Proceedings of the fifth international conference on the computer
vision (ICCV ’95) (pp. 374–381). Washington DC: IEEE Computer Society.

Blanz, V., & Vetter, T. (1999). A morphable model for synthesis of 3D faces. In Computer graphics proc.
SIGGRAPH (pp. 187–194). Los Angeles.

Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annu Rev Neurosci, 28,
157–189.

Bruce, C. J., Desimone, R., & Gross, C. G. (1986). Both striate cortex and superior colliculus contribute to
visual properties of neurons in superior temporal polysensory area of macaque monkey. J Neurophysiol,
55, 1057–1075.

Bruce, V., & Young, A. (1986). Understanding face recognition. Br J Psychol, 77 (Pt. 3), 305–327.

Burton, A. M., & Bruce, V. (1993). Naming faces and naming names: Exploring an interactive activation
model of person recognition. Memory, 1, 457–480.

Burton, A. M., Bruce, V., & Hancock, P. J. B. (1999). From pixels to people: A model of familiar face
recognition. Cognit Sci, 23(1), 1–31.

Carey, S., & Diamond, R. (1986). Why faces are and are not special: An e¤ect of expertise. J Exp Psychol
Gen, 115, 107–117.

Elements for a Neural Theory 205



Casile, A., & Giese, M. A. (2005). Critical features for the recognition of biological motion. J Vis, 5,
348–360.

Cohen, I., Sebe, N., Garg, A., Chen, L. S., & Huang, T. (2003). Facial expression recognition from video
sequences: Temporal and static modeling. Comp Vis Image Understand, 91(1–2), 160–187.

Dailey, M. N., & Cottrell, G. W. (1999). Organization of face and object recognition in modular neural
networks. Neural Networks, 12(7–8), 1053–1074.

Dailey, M. N., Cottrell, G. W., Padgett, C., & Adolphs, R. (2002). EMPATH: A neural network that
categorizes facial expressions. J Cognit Neurosci, 14(8), 1158–1173.

Decety, J., & Grezes, J. (1999). Neural mechanisms subserving the perception of human actions. Trends
Cogn Sci, 3(5), 172–178.

Deco, G., & Rolls, E. T. (2004). A neurodynamical cortical model of visual attention and invariant object
recognition. Vision Res, 44(6), 621–642.

Desimone, R., Albright, T., Gross, C., & Bruce, C. (1984). Stimulus-selective properties of inferior tempo-
ral neurons in the macaque. J Neurosci, 4(8), 2051–2062.

Dollar, P., Rabaud, V., Cottrell, G., & Belongie, S. (2005). Behavior recognition via sparse spatiotemporal
features. Paper presented at the workshop on visual surveillance and performance evaluation of tracking
and surveillance (pp. 65–72). October 16, Beijing China.

Edwards, G., Taylor, C., & Cootes, T. (1998). Interpreting face images using active appearance models.
Paper presented at the 3rd IEEE international conference on automatic face and gesture recognition
(pp. 300–305). Apr. 14–16 Nara, Japan. Washington DC: IEEE Computer Society.

Erlhagen, W., Mukovskiy, A., & Bicho, E. (2006). A dynamic model for action understanding and goal-
directed imitation. Brain Res, 1083(1), 174–188.

Escobar, M. J., Masson, G. S., Vieville, T., & Kornprobst, P. (2009). Action recognition using a bio-
inspired feedforward spiking network. Int J Comp Vis, 82(3), 284–301.

Essa, I., Darrell, T., & Pentland, A. (1994). A vision system for observing and extracting facial action
parameters. In Proceedings of the conference on computer vision and pattern recognition (CVPR ’94) (pp.
76–83). 21 Jun–23 Jun 1994, Seattle WA.

Essen, D. C. V., & Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate
visual system. Neuron, 13(1), 1–10.

Fasel, B., & Luettin, J. (2003). Automatic facial expression analysis: A survey. Pattern Recog, 36(1),
259–275.

Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From
action organization to intention understanding. Science, 308(5722), 662–667.

Friston, K. (2008). Hierarchical models in the brain. PLoS Comput Biol, 4(11), e1000211.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition una¤ected by shift in position. Biol Cyb, 36, 193–202.

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex.
Brain, 119 (Pt 2), 593–609.

Gauthier, I., & Logothetis, N. (2000). Is face recognition not so unique after all? Cognit Neuropsychol,
17(1–3), 125–142.

Gawne, T. J., & Martin, J. M. (2002). Responses of primate visual cortical V4 neurons to simultaneously
presented stimuli. J Neurophysiol, 88(3), 1128–1135.

Giese, M. A., & Leopold, D. A. (2005). Physiologically inspired neural model for the encoding of face
spaces. Neurocomputing, 65–66, 93–101.

Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nat
Rev Neurosci, 4(3), 179–192.

Gong, S., Psarrou, A., Katsoulis, I., & Palavouzis, P. (1994). Tracking and recognition of face sequences.
Paper presented at the Proceedings of the European workshop on combined real and synthetic image pro-
cessing for broadcast and video production. Hamburg, Germany 1994, 23–24. Nov.

Gong, S. M., McKenna, S. J., & Psarrou, A. (2000). Dynamic vision: From images to face recognition.
London: Imperial College Press.

206 T. Serre and M. A. Giese



Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception of biological motion.
Neuron, 1167–1175.

Hancock, P. J. B., Burton, M. A., & Bruce, V. (1996). Face processing: Human perception and principal
components analysis. Memory Cognit, 24, 26–40.

Haxby, J., Ho¤man, E., & Gobbini, M. (2000). The distributed human neural system for face perception.
Trends Cognit Sci, 4(6), 223–233.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate
cortex. J Physiol, 195(1), 215–243.

Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast read-out of object identity from
macaque inferior temporal cortex. Science, 310, 863–866.

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nat Rev Neurosci, 2(3), 194–203.

Jain, A. K., & Li, S. Z. (2005). Handbook of face recognition. New York: Springer-Verlag.

Jhuang, H., Serre, T., Wolf, L., & Poggio, T. (2007). A biologically inspired system for action recognition.
In Proceedings of the eleventh IEEE international conference on computer vision (ICCV) (pp. 1–8). Wash-
ington DC: IEEE Computer Society.

Jiang, X., Rosen, E., Ze‰ro, T., Vanmeter, J., Blanz, V., & Riesenhuber, M. (2006). Evaluation of a
shape-based model of human face discrimination using fMRI and behavioral techniques. Neuron, 50(1),
159–172.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human
extrastriate cortex specialized for face perception. J Neurosci, 17(11), 4302–4311.

Kayaert, G., Biederman, I., & Vogels, R. (2005). Representation of regular and irregular shapes in
macaque inferotemporal cortex. Cereb Cortex, 15(9), 1308–1321.

Kriegman, D., Yang, M. H., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Trans Pattern
Anal Machine Intell, 24, 34–58.

Lampl, I., Ferster, D., Poggio, T., & Riesenhuber, M. (2004). Intracellular measurements of spatial inte-
gration and the MAX operation in complex cells of the cat primary visual cortex. J Neurophysiol, 92(5),
2704–2713.

Lange, J., & Lappe, M. (2006). A model of biological motion perception from configural form cues. J
Neurosci, 26(11), 2894–2906.

Lanitis, A., Taylor, C., & Cootes, T. (1997). Automatic interpretation and coding of face images using
flexible models. IEEE Trans Pattern Anal Machine Intell, 19, 743–756.

LeCun, Y., Bottou, L., Bengio, Y., & Ha¤ner, P. (1998). Gradient-based learning applied to document
recognition. Proc. IEEE, 86, 2278–2324.

Lee, K. C., Ho, J., Yang, M. H., & Kriegman, D. (2003). Video-based face recognition using probabilistic
appearance manifolds. Paper presented at the Proceeding International Conference Computer Vision and
Pattern Recognition (CVPR ’03) (Vol. 1, pp. 313–320). Madison WI, Jun 18–20.

Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the
Optical Society of America, A 20(7), 1434–1448.

Leopold, D. A., Bondar, I. V., & Giese, M. A. (2006). Norm-based face encoding by single neurons in the
monkey inferotemporal cortex. Nature, 442(7102), 572–575.

Leopold, D. A., O’Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced shape encoding
revealed by high-level aftere¤ects. Nat Neurosci, 4(1), 89–94.

Lewis, M. B., & Johnston, R. A. (1999). A unified account of the e¤ects of caricaturing faces. Vis Cognit,
6, 1–41.

Li, Y., Shaogang Gong, S., & Heather Liddell, H. (2001). Modelling faces dynamically across views and
over time. Paper presented at the 8th IEEE International Conference on Computer Vision (pp. 554–559).
Jul 7–14, 2001 Vancouver, BC, Canada.

Lo¿er, G., Yourganov, G., Wilkinson, F., & Wilson, H. R. (2005). fMRI evidence for the neural repre-
sentation of faces. Nat Neurosci, 8(10), 1386–1391.

Logothetis, N. K., & Sheinberg, D. L. (1996). Visual object recognition. Annu Rev Neurosci, 19, 577–621.

Elements for a Neural Theory 207



Luettin, J., Thacker, N. A., & Beet, S. W. (1996). Visual speech recognition using active shape models
and Hidden Markov Models. In Proceedings of the IEEE international conference on acoustics, speech,
and signal processing (ICASSP 96) (Vol. 2, pp. 817–820). 07–10 May 1996, Atlanta GA.

Mase, K. (1991). Recognition of facial expression from optical flow. IEICE Trans, 74(10), 3474–3483.

Mel, B. W. (1997). SEEMORE: Combining color, shape and texture histogramming in a neurally inspired
approach to visual object recognition. Neural Comp, 9, 777–804.

Miall, R. C. (2003). Connecting mirror neurons and forward models. Neuroreport, 14(17), 2135–2137.

Moeller, S., Freiwald, W. A., & Tsao, D. Y. (2008). Patches with links: A unified system for processing
faces in the macaque temporal lobe. Science, 320(5881), 1355–1359.

O’Toole, A. J., De¤enbacher, K. A., Valentin, D., & Abdi, H. (1994). Structural aspects of face recogni-
tion and the other-race e¤ect. Mem Cognit, 22(2), 208–224.

Oram, M. W., & Perrett, D. I. (1996). Integration of form and motion in the anterior superior temporal
polysensory area (STPa) of the macaque monkey. J Neurophysiol, 76(1), 109–129.

Otsuka, T., & Ohya, J. (1996). Recognition of facial expressions using HMM with continuous output
probabilities. Paper presented at the 5th IEEE Workshop on Robot and Human Communication (pp.
323–328). Tsukuba, Japan, 11–14 Nov 96.

Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided
review. Neural Netw, 19(3), 254–271.

Pantic, M., & Patras, I. (2006). Dynamics of facial expression: Recognition of facial actions and their tem-
poral segments from face profile image sequences. IEEE Trans Systems, Man, and Cybernetics, Part B,
36(2), 433–449.

Pantic, M., & Rothkrant, L. J. M. (2000). Automatic analysis of facial expressions: The state of the art.
IEEE Trans Pattern Anal Machine Intell, 22, 1424–1445.

Pasupathy, A., & Connor, C. E. (2001). Shape representation in area V4: Position-specific tuning for
boundary conformation. J Neurophysiol, 86(5), 2505–2519.

Peelen, M. V., & Downing, P. E. (2007). The neural basis of visual body perception. Nat Rev Neurosci,
8(8), 636–648.

Perrett, D., & Oram, M. (1993). Neurophysiology of shape processing. Image Vision Comput, 11, 317–333.

Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal
cortex. Exp Brain Res, 47, 329–342.

Peuskens, H., Vanrie, J., Verfaillie, K., & Orban, G. A. (2005). Specificity of regions processing biological
motion. Eur J Neurosci, 21(10), 2864–2875.

Phillips, P. J., Grother, P., Micheals, R., Blackburn, D. M., Tabassi, E., & Bone, M. (2003). Face recog-
nition vendor test 2002. Paper presented at the IEEE International Workshop on Analysis and Modeling
of Faces and Gestures (p. 44). 17 Oct 2003 Nice France. Washington DC: IEEE Comp. Society.

Pinsk, M. A., Arcaro, M., Weiner, K. S., Kalkus, J. F., Inati, S. J., Gross, C. G., et al. (2009). Neural
representations of faces and body parts in macaque and human cortex: A comparative fMRI study. J
Neurophysiol, 101(5), 2581–2600.

Pinsk, M. A., DeSimone, K., Moore, T., Gross, C. G., & Kastner, S. (2005). Representations of faces and
body parts in macaque temporal cortex: A functional MRI study. Proc Natl Acad Sci USA, 102(19), 6996–
7001.

Pourtois, G., & Vuilleumier, P. (2006). Dynamics of emotional e¤ects on spatial attention in the human
visual cortex. Prog Brain Res, 156, 67–91.

Prinz, W. (1997). Perception and action planning. Eur J Cogn Psychol, 9, 129–154.

Puce, A., & Perrett, D. (2003). Electrophysiology and brain imaging of biological motion. Phil Trans R
Soc Lond B Biol Sci, 358(1431), 435–445.

Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts neural response proper-
ties in the visual cortex, Neural Comp, 9, 721–763.

Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in
macaque areas V2 and V4. J Neurosci, 19(5), 1736–1753.

208 T. Serre and M. A. Giese



Rhodes, G., Brennan, S., & Carey, S. (1987). Identification and ratings of caricatures: Implications for
mental representations of faces. Cogn Psychol, 19(4), 473–497.

Rhodes, G., & Je¤ery, L. (2006). Adaptive norm-based coding of facial identity. Vision Res, 46, 2977–
2987.

Riesenhuber, M., Jarudi, I., Gilad, S., & Sinha, P. (2004). Face processing in humans is compatible with a
simple shape-based model of vision. Proc Biol Sci, 271 Suppl 6, S448–450.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuro-
sci, 2(11), 1019–1025.

Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the under-
standing and imitation of action. Nat Rev Neurosci, 2(9), 661–670.

Rolls, E. T., & Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate
temporal visual cortex. J Neurophysiol, 73(2), 713–726.

Rosenblum, M., Yacoob, Y., & Davis, L. (1994). Human emotion recognition from motion using a radial
basis function network architecture. In Proceedings of the 1994 IEEE workshop on motion of non-rigid and
articulated objects (pp. 43–49). Austin TX, Nov 11–12.

Saito, H. (1993). Hierarchical neural analysis of optical flow in the macaque visual pathway. In T. Ono,
L. R. Squire, M. E. Raichle, D. I. Perrett, and M. Fukuda (eds.), Brain mechanisms of perception and
memory. Oxford, UK: Oxford University Press, pp. 121–140.

Schindler, K., Van Gool, L., & de Gelder, B. (2008). Recognizing emotions expressed by body pose: A
biologically inspired neural model. Neural Netw, 21(9), 1238–1246.

Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., & Poggio, T. (2005). A theory of object rec-
ognition: Computations and circuits in the feedforward path of the ventral stream in primate visual cortex
(AI Memo 2005-036 / CBCL Memo 259). MIT, Cambridge, MA.

Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., & Poggio, T. (2007). A quantitative theory
of immediate visual recognition. Prog Brain Res, 165, 33–56.

Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization.
Proc Natl Acad Sci USA, 104(15), 6424–6429.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Object recognition with cortex-like
mechanisms. IEEE Trans Pattern Analy Machine Intell, 29(3), 411–426.

Sigala, R., Serre, T., Poggio, T., & Giese, M. A. (2005). Learning features of intermediate complexity for
the recognition of biological motion. Artificial Neural Networks: Formal Models and Their Applications—
ICANN 2005, 15th International Conference, Warsaw, Poland Sep 11–15 2005, Warsaw, Poland (pp. 241–
246).

Sirovich, L., & Kirby, M. (1997). A low-dimensional procedure for identifying human faces, J Opt Soc Am
A, 4, 519–524.

Smith, A. T., & Snowden, R. J. (1994). Visual detection of motion. London: Academic Press.

Suwa, M., Sugie, N., & Fujimora, K. (1978). A preliminary note on pattern recognition of human emo-
tional expression. In Proceedings of the 4th international joint conference on pattern recognition (pp. 408–
410). Nov 7–10, 1978, New York NY.

Tanaka, K. (1996). Inferotemporal cortex and object vision, Annu Rev Neurosci, 19, 109–139.

Thurman, S. M., & Grossman, E. D. (2008). Temporal ‘‘bubbles’’ reveal key features for point-light bio-
logical motion perception. J Vis, 8(3), 1–11.

Tian, Y. L., Kanade, T., & Cohn, J. F. (2005). Facial expression analysis. In S. Z. Li & A. K. Jain (eds.),
Handbook of face recognition. New York: Springer-Verlag.

Tistarelli, M., Bicego, M., & Grosso, E. (2009). Dynamic face recognition: From human to machine
vision. Image Vis Comp, 27(3), 222–232.

Tsao, D. Y., & Freiwald, W. A. (2006). What’s so special about the average face? Trends Cognit Sci, 10,
391–393.

Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., & Tootell, R. B. (2003). Faces and
objects in macaque cerebral cortex. Nat Neurosci, 6(9), 989–995.

Elements for a Neural Theory 209



Tsao, D. Y., & Livingstone, M. S. (2008). Mechanisms of face perception. Annu Rev Neurosci, 31, 411–
437.

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition, J Cognit Neurosci, 3, 71–86.

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate complexity and their use
in classification. Nat Neurosci, 5(7), 682–687.

Valentin, D., Abdi, H., & Edelman, B. (1997a). What represents a face? A computational approach for the
integration of physiological and psychological data. Perception, 26(10), 1271–1288.

Valentin, D., Abdi, H., Edelman, B., & O’Toole, A. J. (1997b). Principal component and neural network
analyses of face images: What can be generalized in gender classification? J Math Psychol, 41(4), 398–413.

Valentine, T. (1991). A unified account of the e¤ects of distinctiveness, inversion and race in face recogni-
tion. Quart J Exp Psychol, 43A, 161–204.

van der Gaag, C., Minderaa, R. B., & Keysers, C. (2007). Facial expressions: What the mirror neuron
system can and cannot tell us. Soc Neurosci, 2(3–4), 179–222.

Vangeneugden, J., Pollick, F., & Vogels, R. (2008). Functional di¤erentiation of macaque visual temporal
cortical neurons using a parametric action space. Cereb Cortex, 9(3), 593–611.

Viola, P., & Jones, M. (2001). Robust real-time face detection. In Proceedings of the 8th international con-
ference on computer vision (Vol. 20, No. 11, pp. 1254–1259). Jul 7–14 Vancouver BC, Canada. Washing-
ton DC: IEEE Camp. Society.

Wallis, G., & Rolls, E. T. (1997). A model of invariant recognition in the visual system. Prog Neurobiol,
51, 167–194.

Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychol
Bull, 131(3), 460–473.

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control
and social interaction. Phil Trans R Soc Lond B Biol Sci, 358(1431), 593–602.

Yamaguchi, O., Fukui, K., & Maeda, K. (1998). Face recognition using temporal image sequence. In
Proceedings of the 3rd international conference on automatic face and gesture recognition (pp. 318–323).
Nara Japan, Apr 14–16. Washington DC: IEEE Comp. Soc.

Yang, P., Liu, Q., & Metaxas, D. N. (2009). Boosting encoded dynamic features for facial expression
recognition. Patt Recogn Lett, 30(2), 132–139.

Yin, R. K. (1969). Looking at upside-down faces. J Exp Psychol, 81, 141–145.

Young, M. P., & Yamane, S. (1992). Sparse population coding of faces in the inferior temporal cortex.
Science, 256, 1327–1331.

Yovel, G., & Kanwisher, N. (2004). Face perception: Domain specific, not process specific. Neuron, 44(5),
889–898.

Zhang, Y., & Martinez, A. M. (2006). A weighted probabilistic approach to face recognition from multiple
images and video sequences. Image Vis Comput, 24(6), 626–638.

Zhao, W., Chellappa, R., Rosenfeld, A., & Phillips, P. (2003). Face recognition: A literature survey. ACM
Comp Surveys, 35(4), 399–458.

Zhou, S., Krueger, V., & Chellappa, R. (2003). Probabilistic recognition of human faces from video. Comp
Vis Image Understand, 91, 214–245.

Zoccolan, D., Kouh, M., Poggio, T., & DiCarlo, J. J. (2007). Trade-o¤ between object selectivity and
tolerance in monkey inferotemporal cortex. J Neurosci, 27(45), 12292–12307.

210 T. Serre and M. A. Giese


