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Abstract

In this thesis, I describe a quantitative model that accounts for the circuits and computa-
tions of the feedforward path of the ventral stream of visual cortex. This model is con-
sistent with a general theory of visual processing that extends the hierarchical model of
[Hubel and Wiesel, 1959] from primary to extrastriate visual areas. It attempts to ex-
plain the first few hundred milliseconds of visual processing and “immediate recognition”.
One of the key elements in the approach is the learning of a generic dictionary of shape-
components from V2 to IT, which provides an invariant representation to task-specific cat-
egorization circuits in higher brain areas. This vocabulary of shape-tuned units is learned
in an unsupervised manner from natural images, and constitutes a large and redundant
set of image features with different complexities and invariances. This theory significantly
extends an earlier approach by [Riesenhuber and Poggio, 1999a] and builds upon several
existing neurobiological models and conceptual proposals.

First, I present evidence to show that the model can duplicate the tuning properties of
neurons in various brain areas (e.g., V1, V4 and IT). In particular, the model agrees with
data from V4 about the response of neurons to combinations of simple two-bar stimuli
[Reynolds et al., 1999] (within the receptive field of the S2 units) and some of the C2 units
in the model show a tuning for boundary conformations which is consistent with record-
ings from V4 [Pasupathy and Connor, 2001]. Second, I show that not only can the model
duplicate the tuning properties of neurons in various brain areas when probed with ar-
tificial stimuli, but it can also handle the recognition of objects in the real-world, to the
extent of competing with the best computer vision systems. Third, I describe a compar-
ison between the performance of the model and the performance of human observers in
a rapid animal vs. non-animal recognition task for which recognition is fast and cortical
back-projections are likely to be inactive. Results indicate that the model predicts human
performance extremely well when the delay between the stimulus and the mask is about
50 ms. This suggests that cortical back-projections may not play a significant role when
the time interval is in this range, and the model may therefore provide a satisfactory de-
scription of the feedforward path.

Taken together, the evidences suggest that we may have the skeleton of a successful
theory of visual cortex. In addition, this may be the first time that a neurobiological model,
faithful to the physiology and the anatomy of visual cortex, not only competes with some



of the best computer vision systems thus providing a realistic alternative to engineered
artificial vision systems, but also achieves performance close to that of humans in a cate-
gorization task involving complex natural images.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor in the Brain Sciences and Human Behavior
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Chapter 1

Introduction

A From Models to Theories

Since the 50’s and the groundbreaking work of Hodgkin & Huxley to model the spike

generation process [Hodgkin and Huxley, 1952], there has been an explosion in the devel-

opment of computational models for neuroscience. By now, there are probably hundreds

of models for early vision alone. Indeed some of them have been quiet successful in char-

acterizing the early visual processing from the retina through LGN and V1 (see [Carandini

et al., 2005]).

Perhaps one of the most influential model in vision is the Reichardt model of motion

detection [Reichardt, 1961] which began as a model of the optomotor response of the bee-

tle and later influenced work on motion in different species [Barlow and Lewick, 1965;

Egelhaaf and Reichardt, 1987; Borst et al., 2005] and even human psychophysics [Adelson

and Bergen, 1985]. Similarly the gain control model [Heeger, 1992a,b] has been shown

to account for a wide array of visual phenomena both at the level of single cortical neu-

ron responses (e.g., luminance and gain control, contrast adaptation, surround suppres-

sion and contextual effects as well as orientation tuning and motion selectivity [Heeger,

1993; Carandini and Heeger, 1994; Heeger et al., 1996; Tolhurst and Heeger, 1997]) and

psychophysics [Watson and Solomon, 1997]. Also in primary visual cortex, very detailed

simulations [Ben-Yishai et al., 1995; Somers et al., 1995; McLaughlin et al., 2000] (see [Lund

et al., 2003] for a review) of small networks of neurons (≈ 1 mm2 of cortex) are contributing

towards the understanding of the mechanisms for orientation selectivity.

Detailed models of higher cortical areas, however, have been more scarce. For instance,
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a model of the cortical circuits between V1 and V2 has been described in [Raizada and

Grossberg, 2001] and a two-stage model of MT responses by [Simoncelli and Heeger, 1998].

Surprisingly there have been relatively few attempts to address a high-level computational

task, e.g., flexible control by prefrontal cortex [Rougier and Reilly, 2002; Rougier et al., 2005]

or probabilistic (Bayesian) models of reasoning and inference [Knill and Richards, 1996].

The latter have been particularly useful for interpreting psychophysical experiments and

constrain theories of perception, see [Knill and Richards, 1996; Mamassian et al., 2002;

Rao et al., 2002; Kersten and Yuille, 2003]. For instance, Weiss et al. showed that the same

ideal observer model can explain numerous illusions thought to be mediated by different

neural mechanisms [Weiss et al., 2002]. Yet such probabilistic models lack explicit corre-

spondences between functional primitives of the model and structural primitives of the

cortex and their implications in helping understand neural processing are at best only in-

direct.

Altogether beyond biologically-inspired algorithms [Fukushima, 1980; LeCun et al.,

1998; Ullman et al., 2002; Wersing and Koerner, 2003], i.e., systems only qualitatively con-

strained by the anatomy and physiology of the visual cortex, there have been very few

neurobiologically plausible models [Perrett and Oram, 1993; Mel, 1997; Wallis and Rolls,

1997; Riesenhuber and Poggio, 1999a; Thorpe, 2002; Amit and Mascaro, 2003], that try to

address a generic, high-level computational function such as object recognition by sum-

marizing and integrating a large body of data from different levels of understanding. To

paraphrase C.F Stevens, “Models are common; good theories are scarce” [Stevens, 2000].

The past decades of work in striate and extrastriate cortical areas have produced a sig-

nificant and rapidly increasing amount of data. Understanding the mechanisms underly-

ing object recognition will require to bridge the gap between several levels of understand-

ing from the information processing or computational level to the level of circuits and of

cellular and biophysical mechanisms. The emerging picture of how cortex performs object

recognition is in fact becoming too complex for any simple, qualitative “mental” model.

There is a need for quantitative computational theories that could 1) summarize and orga-

nize existing data and 2) help planning, coordinating and interpreting new experiments.

With the advent of supercomputers and dedicated architectures to simulate detailed mod-

els of neural processing, e.g., blue brain1 [Markram, 2006], it will soon be possible to sim-

ulate detailed circuits of the cortex organized across several cortical areas (e.g., part of the
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visual system).

In particular, one of the main challenges in understanding the mechanisms of object

recognition in cortex is to determine the selectivity of individual neurons. Linear tech-

niques such as reverse-correlation (see [Dayan and Abbott, 2001]) have shown some success

in characterizing V1 simple cell receptive fields. Because of the non-linear nature of the

neural responses in extrastriate areas, it is clear that, without a prior model, any systematic

method is doomed to fail [Albright and Gross, 1990]. Indeed methods for characterizing

the neural response beyond V1 have remained either ad hoc, with an experimenter pre-

senting random objects (e.g., faces, hands, or toilet brushes) or subjective. For instance, the

feature reduction method by Tanaka and colleagues [Tanaka, 1996] have been shown to be

quiet misleading in some cases [Knoblich and Riesenhuber, 2002].

By increasing the contribution of computational models, Neuroscience is slowly mak-

ing up its lag behind other experimental sciences such as Physics. Yet the acceptance of

models in Neuroscience is not unanimous. Partly, this may come from the fact that, so far,

models have only been applied to “simplistic” problems such as the recognition of artificial

“idealized” objects – which are typically used in psychology and physiology (e.g., paper-

clips on a blank background [Logothetis et al., 1994, 1995; Riesenhuber and Poggio, 1999a]).

In particular, the ability of these biologically plausible models to explain more natural real-

world scenarios (i.e., unsegmented objects in clutter undergoing large variations in shape,

pose, appearance and illumination conditions), have been questioned. In this thesis, we

take on the challenge and describe a quantitative theory of object recognition in primate

visual cortex that 1) bridges several levels of analysis from biophysics and physiology to

behavior and 2) achieves human level performance on the rapid recognition of complex

natural images. The theory is restricted to the feedforward path of the ventral stream and

therefore to the first 150 milliseconds or so of visual recognition. The theory evolved over

the past years as a result of a collaboration between several theorists and experimentalists.

In particular, the theory significantly extends an earlier model [Riesenhuber and Poggio,

1999a, 2000]. In this thesis, I shall emphasize my own contributions (see Section D) but for

a further overview of the theory please refer to [Serre et al., 2005a].

We start by describing some general knowledge and basic facts about the ventral stream

of primate visual cortex in Section B. We then review work on models of object recognition

in cortex in Section C. Finally we list the contributions from this thesis in Section D.
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B Architecture and Function of the Visual Cortex

The visual cortex is composed of several areas that tend to be hierarchically organized

[Felleman and van Essen, 1991] (see Fig. 1-1). It is generally believed that the flow of

information through visual cortex can be dissociated into two streams [Mishkin et al., 1983;

DeYoe and Essen, 1988] : the ventral stream and the dorsal stream. Object recognition in

cortex is thought to be mediated by the ventral visual pathway [Ungerleider and Haxby,

1994; Tanaka, 1996; Logothetis and Sheinberg, 1996] which is organized into a series of

neurally interconnected stages, starting from the retina, through the Lateral Geniculate

Nucleus (LGN) of the thalamus to primary visual cortex (V1) and extrastriate visual areas,

V2, V4 and IT. It, in turn, is believed to play a key role in invariant object recognition

[Tanaka, 1996] and provides a major source of input to prefrontal cortex (PFC) involved in

linking perception to memory and action [Miller, 2000].

Over the last decades, several physiological studies in non-human primates have estab-

lished a core of basic facts about cortical mechanisms of recognition that seem to be widely

accepted and that confirm and refine older data from neuropsychology. Fig. 1-2 (modified

from [Perrett and Oram, 1993]) illustrate these general, mostly accepted, properties of the

feedforward path of the ventral stream architecture.

B.1 Hierarchical Organization

Building an Invariant Representation from V1 to IT

There is now a large body of evidences that suggest a gradual increase in both the invari-

ance properties and the complexity of the preferred stimuli of neurons along the visual

stream. The notion of a hierarchy of visual processing initiated with the groundbreaking

work of Hubel & Wiesel, first in the primary visual cortex of the cat [Hubel and Wiesel,

1959, 1962, 1965] and then of the macaque [Hubel and Wiesel, 1968, 1977]. In particular

they described how, from the arrangement of several simple cells with small receptive

fields that respond best to a bar at a particular orientation and position, a complex cell

response can be obtained, that respond also to a bar at a particular orientation anywhere

within its receptive field. Beyond V1, neurons along the ventral stream show an increase

in the size of their receptive fields as well as in the complexity of their preferred stimuli

[Perrett and Oram, 1993; Kobatake and Tanaka, 1994; Tanaka, 1996; Logothetis and Shein-



B. ARCHITECTURE AND FUNCTION OF THE VISUAL CORTEX 23

}

P
G

 C
o
rt

e
x

R
o
s
tr

a
l 
S
T
S

P
re

fr
o
n
ta

l
C
o
rt

e
x

STP

F
R
O

N
T
A
L-

"W
O

R
K
IN

G
 M

E
M

O
R
Y
"

DP VIP LIP 7a PP FST

PO V3A MT

TPO PGa IPa

V3

V4

TEO TF

TG

L
IP

,V
IP

,D
P,

7
a

V
2
,V

3
,V

4
,M

T,
M

S
T

T
E
O

,T
E

T
E
,3

6
,3

5

MSTc

d

d

V1

PG

TE

46 8 45 12
11

13

TEa TEm

TE

V2

V1

dorsal stream

'where' pathway

ventral stream

'what' pathway

MSTp

3536

Figure 1-1: The ventral stream of visual cortex and object recognition. Modified from Ungerleider
& Van Essen [Gross, 1998].

berg, 1996; Riesenhuber and Poggio, 2002]. For instance in V2, it has been shown that some

neurons respond to angle stimuli, possibly through the non-linear combination of oriented

subunits [Boynton and Hegdé, 2004]. Further along the hierarchy, neurons in V4 have been

shown to respond to object features of moderate complexity [Kobatake et al., 1998], such as

Cartesian and non-Cartesian grating [Gallant et al., 1996] or the combination of boundary-

conformations [Pasupathy and Connor, 1999, 2001, 2002].
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lated over the past 30 years. The figure is modified from [Oram and Perrett, 1994] mostly to include
the likely involvement of prefrontal cortex during recognition tasks by setting task-specific circuits
to read-out shape information from IT [Scalaidhe et al., 1999; Freedman et al., 2002, 2003; Hung
et al., 2005].

Beyond V4, in IT, many neurons are selective for a variety of stimulus attributes, such

as color, orientation, texture, direction of movement, and the vast majority is tuned to vari-

ous shapes [Gross et al., 1972; Desimone and Gross, 1979; Desimone et al., 1984; Logothetis

et al., 1995; Tanaka, 1996; Logothetis and Sheinberg, 1996; Vogels, 1999; op de Beeck et al.,

2001; Brincat and Connor, 2004]. At the top of the ventral stream, in anterior inferotem-

poral cortex (AIT), cells are found that are tuned to complex stimuli including body parts,

e.g., faces and face parts, hands, as well as other body parts [Gross et al., 1972; Bruce et al.,

1981; Perrett et al., 1982; Rolls, 1984; Perrett et al., 1984; Baylis et al., 1985; Perrett et al.,

1987; Yamane et al., 1988; Hasselmo et al., 1989; Perrett et al., 1991, 1992; Hietanen et al.,

1992; Souza et al., 2005] (see [Logothetis and Sheinberg, 1996] for a review).
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A hallmark of these AIT cells is the robustness of their firing to stimulus transforma-

tions such as scale and position changes [Tanaka, 1996; Logothetis and Sheinberg, 1996;

Logothetis et al., 1995; Perrett and Oram, 1993]. In addition, as other studies have shown

[Perrett et al., 1985; Perrett and Oram, 1993; Booth and Rolls, 1998; Logothetis et al., 1995;

Hietanen et al., 1992], most neurons show specificity for a certain object view or lighting

condition. In particular, Logothetis et al. trained monkeys to perform an object recogni-

tion task with isolated views of novel 3D objects (e.g., paperclips) [Logothetis et al., 1995].

When recording from the animals’ IT, they found that the great majority of neurons selec-

tively tuned to the training objects were view-tuned (with a half-width of about 20o for

rotation in depth) to one of the training objects (about one tenth of the tuned neurons were

view-invariant, in agreement with earlier predictions [Poggio and Edelman, 1990]). Inter-

estingly they also found that, while monkeys were trained with the object at the same reti-

nal location and size, neurons naturally exhibited an average translation invariance of∼ 4o

(for typical stimulus sizes of 2o) and an average scale invariance of two octaves [Riesen-

huber and Poggio, 1999a]. Whereas view-invariant recognition requires visual experience

of the specific novel object, significant position and scale invariance seems to be immedi-

ately present in the view-tuned neurons [Logothetis et al., 1995] without the need of visual

experience for views of the specific object at different positions and scales.

Beyond IT: Task-Specific Circuits

The results by Logothetis et al. are in agreement with a general computational theory [Pog-

gio, 1990; Poggio and Girosi, 1990; Poggio and Edelman, 1990; Poggio and Hurlbert, 1994;

Vetter et al., 1995; Riesenhuber and Poggio, 2000] suggesting that a variety of visual object

recognition tasks (involving the categorization of objects and faces at different levels) can

be performed based on a linear combination of a few units tuned to specific task-related

training examples. From a computational perspective, contrary to affine transformations

such as translation and rescaling, invariances to non-affine transformations such as illumi-

nation, pose, etc require specific examples from the target object undergoing the desired

transformation. This suggested, in agreement with the physiology (see above) that a ma-

jority of neurons in IT should exhibit a range of invariance to changes in position and scale,

yet, be highly sensitive to changes in 3D rotation and illumination.
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As suggested by [Riesenhuber and Poggio, 2000], a generic dictionary of shape-components,

from V1 to IT, may provide position and scale-invariant inputs to task specific circuits be-

yond IT to generalize over non-affine transformations. For instance, pose-invariant face

categorization circuits may be built, possibly in PFC, by combining several units tuned to

different face examples, including different people, views and lighting conditions. “Ani-

mal vs. non-animal” categorization units could be built by combining the activity of a few

AIT cells tuned to various examples of animals and non-animals. A study by [Freedman

et al., 2003] recently suggested that the tuning of neurons in IT is best explained by their

selectivity to shape while the tuning of neurons in PFC is best explained by their selectivity

to object category. While it is often difficult to tell apart shape-selectivity from category-

selectivity (see [Freedman et al., 2003]), category-selectivity does not need to correspond

to shape similarity. While tuning for shape can be learned in an unsupervised manner,

category-specific tuning requires supervision (i.e., training examples along with a corre-

sponding label).

B.2 Learning and Plasticity

There is now good evidence for learning and plasticity in adult cortex. From the computa-

tional perspective, it is very likely that learning may occur in all stages of visual cortex. For

instance if learning a new task involves high-level object-based representations, learning

is likely to occur high-up in the hierarchy, at the level of IT or PFC. Conversely, if the task

to be learned involves the fine discrimination of orientations, changes are more likely to

occur in lower areas at the level of V1, V2 or V4. It is also very likely that changes in higher

cortical areas should occur at faster time scales than changes in lower areas.

There have been several reports of plasticity at the level of PFC [Rainer and Miller, 2000;

Freedman et al., 2003; Pasupathy and Miller, 2005]. It has also been shown [Miyashita,

1988; Sakai and Miyashita, 1991] that after training animals to perform delayed-match-to-

sample tasks, some neurons in IT become selective to both the sample and the test stim-

uli while others become selective for the target stimulus during the delay period. The

former is compatible with plasticity occurring at the level of IT while the latter suggests

that changes occurred in higher stages, possibly in the medial temporal lobe or PFC. Such

learning-related effects can be very fast: [Erickson and Desimone, 1999] reported that it

may take as little as two days for them to occur.
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Numerous studies have confirmed that the tuning of the view-tuned and object-tuned

cells in AIT depends on visual experience and that neurons tend to be more selective for

familiar than unfamiliar objects [Li et al., 1993; Booth and Rolls, 1998; Vogels, 1999; Di-

Carlo and Maunsell, 2000; Sheinberg and Logothetis, 2001; Freedman et al., 2003, 2006]

or geometric shapes [Miyashita, 1993; Sakai and Miyashita, 1994; Logothetis et al., 1995;

Tanaka, 1996; Kobatake et al., 1998; Miyashita and Hayashi, 2000; Baker et al., 2002; Sigala

and Logothetis, 2002; op de Beeck et al., 2003]. In particular, it has been shown that ex-

trinsic factors such as repetition, familiarity, and saliency can modulate the activity of IT

neurons [Miller et al., 1991, 1993; Fahy et al., 1993; Li et al., 1993; Jagadeesh et al., 2001], and

that visual experience results in increased clustering of neurons that respond selectively to

trained stimuli [Erickson et al., 2000].

In addition, long-term visual experience and training have been shown to induce learning-

related changes in IT. In particular, [Logothetis et al., 1995] showed that after training mon-

keys to discriminate between new unfamiliar objects (e.g., paperclips), some AIT neurons

become selective to particular views. [Kobatake et al., 1998] more directly showed that

the population of cells selective for training examples was significantly higher (25%) in

trained than in (untrained) control animals. [Sigala and Logothetis, 2002] found an en-

hanced representation of shape features that are relevant for categorizing sets of familiar

stimuli and [Baker et al., 2002] for conjunctions of familiar stimulus feature pairs that are

experienced together. [Booth and Rolls, 1998] showed that training is not necessary and

that passive exposure to new 3D objects (real toy objects disposed in the monkey cage) is

sufficient to produce view-dependent as well as view-independent neurons in IT that are

selective for the target object. These results were recently confirmed by [Freedman et al.,

2006] who additionally reported that this sharpening of the selectivity for the familiar ob-

jects is particularly pronounced during the early response onset of the neurons. Finally,

imaging studies [Dolan et al., 1997; Gauthier et al., 1999] have shown an enhanced activity

in IT during perceptual learning of objects and faces [Gauthier et al., 1999].

In intermediate cortical stages, at the level of V4, two studies have reported changes as-

sociated with perceptual learning on degraded images at the level of V4 [Yang and Maun-

sell, 2004; Rainer et al., 2004]. Below V4, learning-related changes have been reported in

V1 [Singer et al., 1982; Karni and Sagi, 1991; Yao and Dan, 2001; Schuett et al., 2001; Crist

et al., 2001], although their extent and functional significance is still under debate [Schoups

et al., 2001; Ghose et al., 2002; DeAngelis et al., 1995].
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B.3 Feedforward Processing and Immediate Recognition

Behavioral studies: It is well known that recognition is possible for scenes viewed in

rapid visual serial presentations (RSVP) that do not allow sufficient time for eye move-

ments or shifts of attention [Potter, 1975, 1976] (see also [Biederman, 1972; Biederman et al.,

1974] and [Potter et al., 2002] for a recent review). In particular, [Potter, 1975, 1976] showed

that human observers can detect a target object embedded in an image sequence when pre-

sented at rates as fast as 10/s. In a pioneering series of experiments, Thorpe and colleagues

introduced the study of a visual phenomenon referred to as ultra-rapid visual categorization

[Thorpe et al., 1996] or simply rapid categorization. Over the years, several key characteris-

tics of these rapid categorization tasks have been discovered. Below is a short overview:

1. Not only human observers, but also monkeys can be very fast and accurate during

rapid categorization tasks. While slightly less accurate, monkeys are indeed ∼ 30%

faster than humans [Fabre-Thorpe et al., 1998].

2. Rapid categorization is not only possible for natural categories such as animals or

food [Thorpe et al., 1996; Fabre-Thorpe et al., 1998] but also artificial categories such

as means of transport [VanRullen and Thorpe, 2001b].

3. The removal of color information during image presentations has little effect on per-

formance, leaving the latencies of the fastest behavioral responses unaffected in both

monkeys and humans [Delorme et al., 2000].

4. The fastest reaction times cannot be further speed up by training and familiarity

[Fabre-Thorpe et al., 2003].

5. Rapid categorization is possible even without direct fixation, i.e., when presentations

appear both near and far from the fovea [Thorpe et al., 2001b].

6. Rapid categorization is very robust to image rotation [Rousselet et al., 2003; Guyon-

neau et al., 2005] in terms of both reaction times and performance.

7. Rapid categorization is possible with presentation times as low as 6.25 ms and when

a backward mask follows the image presentation. Performance is near optimal for

a stimulus onset asynchrony (i.e., the delay between the stimulus and the mask)

around 40− 50 ms [Bacon-Mace et al., 2005].
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Figure 1-3: The feedforward circuits involved in rapid categorization tasks. Numbers for each
cortical stage corresponds to the shortest latencies observed and the more typical mean laten-
cies [Nowak and Bullier, 1997; Thorpe and Fabre-Thorpe, 2001]. Modified from [Thorpe and Fab-
re-Thorpe, 2001].

8. Rapid categorization does not seem to require attention. The level of performance

of human observers remain high even when two images are flashed simultaneously

(one on each hemifield) [Rousselet et al., 2002, 2004b] and when the image is pre-

sented parafoveally while an attention-demanding (letter discrimination) task is per-

formed at the fovea [Li et al., 2002].

9. Differential EEG activity suggests that the task is solved within 150 ms [Thorpe et al.,

1996; Liu et al., 2002; Mouchetant-Rostaing et al., 2000] (but see also [Johnson and

Olshausen, 2003; VanRullen and Thorpe, 2001a]).

10. Rapid categorization has also been studied using a choice saccade task. Indeed par-

ticipants can make a saccade towards one of two images (flashed simultaneously

for 30 ms in each hemifield) that contains an animal with the most rapid saccades

occurring within 150 ms [Kirchner and Thorpe, 2005].

Altogether, considering typical neural latencies and the number of cortical stages in-

volved in object categorization (see Fig. 1-3 for illustration), the very short reaction times

observed during rapid categorization tasks strongly suggest that the flow of information
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is mostly feedforward (apart from local feedback loops) and that there is no time for more

than a few spikes at each stage of the hierarchy [Thorpe and Fabre-Thorpe, 2001] (see also

[VanRullen and Koch, 2003]).

Physiological studies: At the neural level, the immediate selectivity of neurons after re-

sponse onset is likely to rule out the involvement of feedback loops. [Oram and Perrett,

1992] showed that the response in IT neurons begins 80 − 100 ms after onset of the visual

stimulus and the response is tuned to the stimulus essentially from the very beginning.

Indeed [Tovee et al., 1993] showed that 20 − 50 ms time periods are sufficient to provide

reasonable estimates of the firing rate and that the first 50 ms after the onset of the neural

response already contains 84% of the information present in a 400 ms window. [Keysers

et al., 2001] used a rapid serial visual presentation (RSVP) paradigm to assess the selectivity

of neurons in STS and confirmed that stimulus discrimination can arise within 10− 20 ms

of response onset, see also [Rolls et al., 1999; Ringach et al., 1997; Celebrini et al., 1993;

Oram and Perrett, 1992; Thorpe et al., 1996]. Recent data [Hung et al., 2005] show that

the activity of small neuronal populations (≈ 100 randomly selected cells) in IT over very

short time intervals (as small as 12.5 ms but lasting at least 50 ms) after beginning of the

neural response (80 − 100 ms after onset of the stimulus) contains surprisingly accurate

and robust information supporting a variety of recognition tasks.

Altogether, it has been suggested that for immediate recognition tasks, only a few spikes

are propagated from one layer to the next [Thorpe and Imbert, 1989; Oram and Perrett,

1992; Tovee et al., 1993] and that the underlying architecture has to be feedforward (be-

sides local recurrent loops to implement key computations). As suggested by [Földiák and

Young, 1995; Perrett et al., 1998; Keysers et al., 2001], with only very few spikes transmitted

at each stage, reading out information from one stage by the next is not about how much

one neuron fires but rather how many of a particular type fire.

Anatomical studies: Studies of cortico-cortical circuits (e.g., from V1 to extrastriate ar-

eas) have shown that feedforward connections are focused, while feedback connections

(e.g., from extrastriate cortex to V1) are more widespread [Callaway, 1998a; Zeki and Shipp,

1985; Shipp and Zeki, 1989a,b; Salin and Bullier, 1995]. Yet, despite the widespread na-

ture of feedback connections, classical receptive fields (in V1 for instance) are relatively
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small. This suggests that feedforward inputs shape the selectivity of individual neurons

while feedback connections play a modulatory role, influencing neuronal responses pri-

marily when visual stimuli are placed outside the classical receptive field (see [Knierim

and van Essen, 1992; Bullier et al., 1996] for instance). Back-projections are neither suffi-

cient (i.e., they can’t activate their target neurons without feedforward inputs [Zeki and

Shipp, 1988; Sillito et al., 1994], see [Grossberg, 2005] for a review), nor necessary (neurons

tend to be selective from the very beginning of the onset of their responses before back-

projections could be active). Indeed, one criteria often used to isolate back-projections is

that they are only activated after the neuron onto they project [Callaway, 1998a].

B.4 Summary

The accumulated evidence points to several mostly accepted properties of the ventral

stream of visual cortex:

1. Along the hierarchy, neurons become both increasingly selective to more and more

complex stimuli and increasingly invariant; first to 2D affine transformations (e.g., po-

sition and scale, from V1 to IT) and then more complex transformations that require

learning (e.g., pose, illumination, etc , above IT). In parallel, the size of the receptive

fields of neurons increase;

2. Learning can induce fast changes (within days) on the tuning properties of neurons

probably at all stages and certainly in higher areas (IT and PFC).

3. The processes that mediate immediate recognition are likely to be feedforward, do not

involve color information nor attentional circuits.

C Models of Object Recognition in Cortex

Models that have been proposed to explain invariant recognition in cortex roughly fall into

two categories: the normalization approach and the full replication scheme (also referred

to as invariant feature or convolutional networks), see [Riesenhuber and Poggio, 1999a;

Ullman and Soloviev, 1999; Wiskott, 2006] for reviews.

The normalization approach is the standard approach in computer vision: Typically

an input image is first transformed into an image-pyramid before it is scanned over all
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positions and scales with a fixed size template window (see [Sung and Poggio, 1998; Os-

una et al., 1997; Oren et al., 1997; Schneiderman and Kanade, 2000; Heisele et al., 2001b,c;

Viola and Jones, 2001] to name just a few). A biologically plausible implementation of

such normalization scheme is the shifter-circuit [Olshausen et al., 1993] and its extension

[Olshausen et al., 1995] (see also [Postma et al., 1997]). In their approach, dynamic routing

circuits control the connection strengths between input and output layers (switching on

and off connections) so as to extract a normalized representation in the attended region.

Related and perhaps more plausible models such as the Gain-field models have also been

proposed [Salinas and Abbott, 1997; Riesenhuber and Dayan, 1997] that rely on attention-

controlled shift or modulation of receptive fields in space.

All these models rely heavily on back-projections and top-down mechanisms. While it

is possible that similar mechanisms may be used in visual cortex (for instance the gain-field

models receive partial support from V4 data [Moran and Desimone, 1985; Connor et al.,

1997]), it is clear that such circuits are not compatible with the physiological constrains

provided by immediate recognition and rapid categorization tasks. Such circuits may be

very important for normal everyday vision; yet, as discussed in Section B.3, there is now a

large body of evidence suggesting that back-projections do not play a key role in the first

few hundreds of milliseconds of visual processing. We now briefly review the literature

on feedforward models of object recognition in cortex.

C.1 Related Work

Conceptual proposals: Following their work on striate cortex, Hubel & Wiesel proposed

a hierarchical model of cortical organization. In particular, they described a hierarchy of

cells within the primary visual cortex: at the bottom of the hierarchy, the radially symmetric

cells are like LGN cells and respond best to small spots of light. Second, the simple cells do

not respond well to spots of light and require bar-like (or edge-like) stimuli at a particular

orientation, position and phase (i.e., white bar on a black background or dark bar on a

white background). In turn, the complex cells are also selective for bars at a particular

orientation but they are insensitive to both the location and the phase of the bar within

their receptive fields. At the top of the hierarchy the hypercomplex cells not only respond

to bars in a position and phase invariant way, just like complex cells, but are also selective

for bars of a particular length (beyond a certain length their response starts decreasing).
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Figure 1-4: The Hubel & Wiesel hierarchical
model for building complex cells from simple
cells. Reproduced from [Hubel and Wiesel, 1959].

Hubel & Wiesel suggested that such increasingly complex and invariant object repre-

sentations could be progressively built by integrating convergent inputs from lower levels.

For instance, as illustrated in Fig. 1-4 (reproduced from [Hubel and Wiesel, 1959]), position

invariance at the complex cells level, could be obtained by pooling over simple cells at the

same preferred orientation but at slightly different positions.

Computer vision systems: Motivated by earlier work on perceptrons [Rosenblatt, 1962],

Fukushima developed a computer vision system based on the Hubel & Wiesel model. Af-

ter a series of extension [Fukushima, 1975, 1980], the network was shown to perform well

in digit recognition applications [Fukushima et al., 1983]. In turn, after the development

of a rigorous mathematical framework to train multi-layer network architectures with the

back-propagation algorithm [Parker, 1986; Rumelhart et al., 1986; LeCun, 1986], several

systems (called convolutional networks) were subsequently developed. In particular, the

system developed by LeCun and colleagues was shown to perform extremely well in the
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domain of digits recognition [LeCun et al., 1989, 1998] and more recently in the domain of

generic object recognition [LeCun et al., 2004], face identification [Chopra et al., 2005] and

for controlling an autonomous off-road vehicle [LeCun et al., 2005].

Before closing this review on biologically-inspired computer vision systems, let us

briefly mention two (non-exclusive) classes of computer vision systems that are (roughly)

inspired by biology and could therefore provide a plausibility proof for certain computa-

tional principles. Approaches that rely on qualitative image-based representations, e.g., or-

dinal encoding, constitute one such type. Indeed Thorpe and colleagues have argued for

some time that such representation (based on temporal order coding, see Section C.2) could

be used in visual cortex. As a plausibility proof they designed a very fast computer vision

system called SpikeNet [Thorpe and Gautrais, 1997; VanRullen et al., 1998; Gautrais and

Thorpe, 1998; Delorme and Thorpe, 2001; Thorpe et al., 2001a; Thorpe, 2002]. Qualitative

encoding schemes have been shown to be particularly robust to image degradations such

as changes in light and illumination, for stereo matching [Bhat and Nayar, 1998], object

recognition [Sali and Ullman, 1999; Sinha, 2002], iris identification [Sun et al., 2004]. Addi-

tionally [Sadr et al., 2002] showed that image reconstruction was possible based on ordinal

representations.

Other computer vision systems related to biology are the component-based or also called

part-based systems, see [Mohan et al., 2001; Heisele et al., 2001c; Ullman et al., 2002; Torralba

and Oliva, 2003] and also [Lowe, 2000]. Those hierarchical systems contain two layers: In

the first layer, the outputs of a few component-detectors (e.g., eye-, nose-, mouth-detectors

in the case of face detection) are locally maximized and further passed to the second layer

that performs the final verification. While such systems are only vaguely mimicking the

visual cortex and lack a direct implementation in terms of plausible neural mechanisms,

they may however provide insights and design principles for biological vision [Serre et al.,

2004a; Ullman et al., 2002].

For instance, Radial Basis Function (RBF) networks [Poggio and Girosi, 1990; Poggio

and Smale, 2003] are among some of the best learning algorithms, yet simple enough to

be implemented with biologically plausible circuits. RBF networks combine the activity of

units that are broadly tuned to one of the training examples and have been shown to gen-

eralize well to new unseen examples by interpolating among the learned examples. Poggio

& Edelman have demonstrated that such network can perform view-invariant recognition
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of 3D objects from just a few 2D views. This, in turn, motivated the experimental work by

Logothetis et al. who trained monkeys to finely discriminate 3D objects (paperclips). They

found a large proportion of cells in IT that were tuned to particular views of the paperclip

objects presented during training as well as a small number of view-invariant cells (as sug-

gested by [Poggio and Edelman, 1990]). The scheme was later extended to deal with time

sequences for the recognition of biological motion [Giese and Poggio, 2003]. Recently Pog-

gio & Bizzi emphasized that neurons with a bell-shaped tuning are common in cortex and

suggested that the same principles could apply to different modalities (e.g., motor cortex,

see [Poggio and Bizzi, 2004]).

Neurobiological models: As discussed earlier, we limit our review to a special class of

models of object recognition in cortex which appears to be compatible with most of the

physiology and anatomy of the ventral stream of visual cortex [Riesenhuber and Poggio,

1999a]. These models share the basic idea that the visual system is a feedforward process-

ing hierarchy where invariance ranges and complexity of preferred features grow as one

ascends through the levels.

Perhaps the first outline of a neurobiological model of shape processing in the ven-

tral stream is the model by Perrett & Oram [Perrett and Oram, 1993; Oram and Perrett,

1994] illustrated in Fig. 1-2 (see also [Gochin, 1994]). Extending Fukushima’s translation-

invariant Neocognitron [Fukushima, 1980], they showed how a generalization of the pool-

ing mechanisms used in the Neocognitron for invariance to translation could provide scale

invariance as well.

Based on the same principles, another model implementation, VisNet, was proposed

[Wallis and Rolls, 1997]. The model extended an earlier conceptual proposal [Rolls et al.,

1992] (similar to [Perrett and Oram, 1993]) and earlier implementations [Wallis et al., 1993;

Rolls, 1995]. The model relied on a trace learning rule [Földiák, 1991] to learn invariances.

The algorithm exploits the temporal continuity between views of a target object during

the presentation of a sequence of the object undergoing a transformation. The scheme was

shown to enable the network to learn translation, scale and view-invariant representations

at the level of IT. Various derivations of the original trace learning rule have been proposed

since [Stringer and Rolls, 2000; Rolls and Milward, 2000; Stringer and Rolls, 2002; Elliffe

et al., 2002]. The most recent extension [Deco and Rolls, 2004] includes a model of the
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dorsal stream to account for top-down and attentional effects (see also [Amit and Mascaro,

2003] for a model of the ventro-dorsal interaction).

Summarizing and integrating previous approaches, [Riesenhuber and Poggio, 1999a]

showed that a feedforward theory could duplicate quantitatively the tuning and invariance

properties of the so-called view-tuned cells in AIT [Logothetis et al., 1995] (see also Section

B.1). The model relied on a non-linear MAX-like pooling operation as a key mechanism

to provide invariance to image degradations while avoiding the superposition problem

(i.e., the simultaneous presentation of multiple weak stimuli being as strong as the activity

of the preferred stimulus. Further extensions of the original model was shown to per-

form well on a face detection task [Serre et al., 2002] as well as a generic object recognition

task [Wersing and Koerner, 2003]. The architecture of the system by Wersing & Körner is

now partially designed by evolution principals through genetic algorithms [Schneider et al.,

2005].

Von der Malsburg formulated the main criticism to this class of feedforward models

also called the feature-binding problem [von der Malsburg, 1981, 1995, 1999]. He suggested

that models that rely on spatially invariant feature-detectors, because of the lack of relative

position and size information between detectors, may fail to discriminate between object

composed of the same basic dictionary of features and disentangle between features from

one object and features from another object or clutter (leading to potential hallucinations)

[von der Malsburg, 1995]. Based on model simulations, there is now growing evidence that

the binding problem is indeed not a problem and that the claim was erroneous [Riesenhu-

ber and Poggio, 1999b; Mel and Fiser, 2000; Stringer and Rolls, 2000]. As discussed in

[Riesenhuber and Poggio, 2000] a gradual and parallel increase in both the complexity of

the preferred stimulus and the invariance properties of the neurons prevent to avoid an

explosion in the number of units to encode a large number of objects while circumventing

the binding problem.

Summary: On the one hand, there are computer vision systems that are inspired by bi-

ology and that exhibit good performance on real-world recognition problems. Yet because

they lack a direct correspondence with cortical stages, such systems cannot be used to

make predictions for physiologists. Alternatively, there are neurobiological models, con-

strained by the anatomy of the visual cortex. Yet, for the most part, these models have
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only been tested on artificial simple object images (e.g., paperclips presented on a blank

background [Riesenhuber and Poggio, 1999a], bars [Stringer and Rolls, 2002; Elliffe et al.,

2002] or letters of the alphabet in [Deco and Rolls, 2004]). When trained on natural images

(e.g., [Wallis and Rolls, 1997]), datasets tend to be small, images are preprocessed and the

performance of such systems is never evaluated on novel unseen examples. So far, none of

the neurobiologically plausible models have been tested for their recognition capabilities

on large scale, real-world, image databases where objects (faces, cars, pedestrians, etc ) un-

dergo drastic changes in appearance and are presented on complex clutter. In particular,

it remains unclear whether such architectures could explain the high level of performance

achieved by the primate visual system during rapid categorization tasks [Thorpe et al.,

1996].

C.2 Cortical Circuits and Key Computations

From single neurons to computational modules: As discussed earlier, given the imme-

diate selectivity and tuning of cells (i.e., within very small temporal windows of 10−30 ms),

the underlying neural circuits have to operate on only very few spikes. This suggests that,

during such temporal windows, neurons can only transmit a few bits. Yet neural networks

and models of object recognition in cortex have typically relied on the neural activity being

an analog (continuous) value. Whether or not feedforward neural networks can indeed

transmit rate codes is still under debate [van Rossum et al., 2002; Litvak et al., 2003]. One

way to cope with the problem of insufficient dynamic range, which does not involve firing

rates, is to consider computational modules2, i.e., groups of n equivalent cells [Földiák and

Young, 1995; Perrett et al., 1998; Shadlen and Newsome, 1998; Keysers et al., 2001; Serre

et al., 2005a], as the basic unit of processing rather than individual neurons. The informa-

tion transmitted by one stage to the next is not about how much one neuron fires but rather

how many neurons of a particular type fire within temporal windows of about 10− 30 ms

[Thorpe and Imbert, 1989; Thorpe and Fabre-Thorpe, 2001; Keysers et al., 2001; Rolls, 2004].

While the solution seems very suboptimal (having n units that encode each of the pos-

sible feature dimension at each location in the visual field), redundancy in cortical organi-

zation is a well documented fact, e.g., ≈ 80− 100 neurons in a general column [Mountcas-

tle, 1957, 1997] and even 2.5 times these numbers in V1 [Mountcastle, 1997]. Interestingly

[Shadlen and Newsome, 1998] estimated that ensembles of ≈ 50 − 100 neurons were suf-
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Figure 1-5: Computational modules in cortex: The basic
processing unit in models of object recognition in cortex
(e.g., the nodes of Fig. 2-1) may correspond to computa-
tional modules in cortex rather than single neurons. Modules
would be composed of equivalent cells with identical para-
meters and identical inputs from other units in the circuit.
In addition, each cell receives an individual bias term (nor-
mally distributed background noise). Instead of 1−3 spikes
available to estimate firing rates (within the 10−30 ms time
window available), the postsynaptic cell now receives up
to 2n spikes from the n neurons in the module. Such mod-
ules may correspond to cortical columns [Mountcastle, 1957,
1997] (or part of it). For instance because of geometric con-
straints, the axons of the neurons within a cortical column,
are likely to contact the dendrite of a postsynaptic neuron
in the same vicinity and may thus correspond to a single
compartment (averaging out the activity of the module).

ficient to reliably transmit “firing rates”. To paraphrase Mountcastle [Mountcastle, 1997]:

“the effective unit of operation in such a distributed system is not the single neuron and its

axon, but groups of cells with similar functional properties and anatomical connections”.

Fig. 1-5 illustrates how the dynamic range of the module is increased by a factor n com-

pared to single neurons.

It is important to point out that the number of cells n in the module probably decreases

along the visual hierarchy from V1 to IT. In early stages, a large dynamic range of the in-

puts is needed, whereas at the other extreme in IT, only the binary presence or absence

of each critical feature has to be conveyed. A cortical column in V1 contains 2.5 times

more neurons in V1 than in a column in extrastriate cortex [Mountcastle, 1997]. The basal

dendritic arbors of layer III pyramidal neurons tend to become larger and more spinous

towards higher cortical areas [Elston, 2003]. Contrast invariance data also provide some

indirect support to the idea that the number of units in each module decreases along the hi-

erarchy. For instance [Sclar et al., 1990] showed that the steepness of the contrast-response

functions of neurons increases from LGN through V1, V2 to MT and that “cells become,

in the contrast domain, progressively more like switches, being either on or off” [Lennie,

1998].

Key computations: The key computational issue in object recognition is the specificity-

invariance trade-off: recognition must be able to finely discriminate between different ob-

jects or object classes while at the same time be tolerant to object transformations such as
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Figure 1-6: A typical bell-shaped TUNING from one cell in AIT. Illustrated here is the tuning of a
particular cell to a specific view of a paperclip presented during training [Logothetis et al., 1995].
As the stimulus presented rotates away from the tuned view (along either of the two axes), the
response of the cell decreases with a (Gaussian-like) bell-shaped curve. Neurons with such tuning
are prevalent across cortex. [Poggio and Bizzi, 2004] argued that this may be a key feature of the
generalization ability of cortex (i.e., the ability to generalize to new unseen examples by opposition
to a look-up table), see text. The figure is modified from [Logothetis et al., 1995].

scaling, translation, illumination, changes in viewpoint, changes in context and clutter, as

well as non-rigid transformations (such as a change of facial expression) and, for the case

of categorization, also to variations in shape within a class. Thus the main computational

difficulty of object recognition is achieving a trade-off between selectivity and invariance.

Theoretical considerations [Riesenhuber and Poggio, 1999a] suggested that only two func-

tional classed of units may be necessary to achieve this trade-off:

• The simple S units perform a TUNING operation over their afferents to build object-

selectivity. The simple S units receive convergent inputs from retinotopically or-

ganized units tuned to different preferred stimuli and combine these subunits with a

bell-shaped tuning function, thus increasing object selectivity and complexity of the

preferred stimulus.

The analog of the TUNING in computer vision is the template matching operation be-

tween an input image and a stored representation. As discussed in [Poggio and

Bizzi, 2004] neurons with a Gaussian-like bell-shape tuning are prevalent across cor-
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tex. Eq. 1.2 offers a phenomenological model of the bell-shaped tuning found across

cortex. For instance simple cells in V1 exhibit a Gaussian tuning around their pre-

ferred orientation (see Chapter 2) or as pointed out earlier in Section B cells in AIT

are typically tuned around a particular view of their preferred object. Fig. 1-6 illus-

trates the bell-shape tuning of a typical AIT cell from [Logothetis et al., 1995] to a

particular view of a paperclip presented during training. From the computational

point of view, Gaussian-like tuning profiles may be key in the generalization ability

of cortex. Networks that combine the activity of several units tuned with a Gaussian

profile to different training examples have proved to be powerful learning scheme

[Poggio and Girosi, 1990; Poggio and Smale, 2003].

• The complex C units perform a MAX-like 3 operation over their afferents to gain in-

variance to several object transformations. The complex C units receive convergent

inputs from retinotopically organized S units tuned to the same preferred stimuli but at

slightly different positions and scales with a MAX-like operation, thereby introduc-

ing tolerance to scale and translation. Fig. 1-7 shows an example of a MAX operation

being performed at the level of a V1 complex cell.

MAX functions are commonly used in signal processing (e.g., selecting peak corre-

lations) to filter noise out. The existence of a MAX operation in visual cortex was

predicted by [Riesenhuber and Poggio, 1999a] from theoretical arguments (and lim-

ited experimental evidence [Sato, 1989] and was later supported experimentally in

V4 [Gawne and Martin, 2002] and in V1 at the complex cell level [Lampl et al., 2004].

Fig. 1-7 (reproduced from [Lampl et al., 2004] illustrates how a complex cell may

combine the response of oriented retinotopically organized subunits (presumably

simple cells) at the same preferred orientation with a MAX pooling mechanism.

As discussed earlier, a gradual increase in both selectivity and scale (as observed along

the ventral stream) is critical to avoid both a combinatorial explosion in the number of

units, and the binding problem between features. Below we shortly give idealized mathe-

matical approximations of the operations and discussed possible cortical circuits to imple-

ment them.
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Figure 1-7: MAX operation from a complex cell in area 17 of the cat. Illustrated is the response of a
complex cell to the simultaneous presentation of two bars (see [Lampl et al., 2004]) for details). A:
average membrane potential measured from the response of the cell to bars of the optimal orienta-
tion. Black traces are the responses to dark bars (OFF responses) and gray traces are the responses to
bright bars (ON responses). B: intensity plots obtained from the mean potentials. C: cell responses
to each of the selected bars shown in B by thick lines around the rectangles. Lines in the 1st row and
1st column panels are the averaged responses to the presentation of a single bar, and the shaded
area shows the mean (±SE). The inner panels present the response of the cell to the simultaneous
presentation of the 2 bars whose positions are given by the corresponding column and row (gray
traces), the responses to the 2 stimuli presented individually (thin black traces) and the linear sum
of the 2 individual responses (thick black traces). Modified from [Lampl et al., 2004]
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Idealized mathematical descriptions of the two operations: In the following, we denote

y the response of a unit (simple or complex). The set of inputs to the cell (i.e., presynaptic

units) are denoted with subscripts j = 1 . . . N ∈ N . When presented with a pattern

of activity x = (x1, . . . xN ) as input, an idealized – and static – description of the unit

response y is given by:

y = max
j∈N

xj (1.1)

As mentioned earlier, for a complex cell, The inputs xj to the units are retinotopically

organized (selected from an m×m grid of afferents with the same selectivity). For instance

in the case of a V1-like complex cell tuned to an horizontal bar, all subunits are tuned to

an horizontal bar but at slightly different positions and spatial frequency (or equivalently

scale or bar dimension). Similarly, an idealized description of a simple unit response is

given by:

y = exp



−
1

2σ2

n
∑

j=1

(wj − xj)
2



 (1.2)

σ defines the sharpness of the TUNING of the unit around its preferred stimulus (also called

center for RBF networks [Poggio and Girosi, 1990]) corresponding to the synaptic strengths

w = (w1, . . . wn). As for complex cells, the subunits of the simple cells are also retino-

topically organized (selected from an m × m grid of possible afferents). But, in contrast

with complex cells, the subunits of a simple cell can be with different selectivities to in-

crease the complexity of the preferred stimulus. For instance, for S2 units the subunits

are V1-like complex cells (with a small range of invariance to position and scale) at dif-

ferent preferred orientations. Eq. 1.2 accounts for the bell-shaped tuning of cells found

across cortex [Poggio and Bizzi, 2004]. That is, the response of the unit is maximal (y = 1)

when the current pattern of input x matches exactly the synaptic weights w (for instance

the frontal view of a face) and decreases with a bell-shaped profile as the pattern of input

becomes more dissimilar (as the face is rotated away from the profile view).

Both of those mathematical descriptions are only meant to describe the response be-

havior of cells at a phenomenological level. [Yu et al., 2002] described several circuits that
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could compute an approximation of a MAX called a SOFTMAX. [Kouh and Poggio, 2004] in-

vestigated possible approximations to Gaussian functions and found that, in high dimen-

sional space, a Gaussian function can be well approximated by a normalized dot-product

passed through a sigmoid [Kouh and Poggio, 2004; Maruyama et al., 1991, 1992]. Mathe-

matically, a normalized dot-product and a softmax, take essentially the same general form,

that is:

y =

n
∑

j=1

w∗
j xp

j

k +





n
∑

j=1

xq
j





r , (1.3)

where k << 1 is a constant to avoid zero-divisions and p, q and r represent the static non-

linearities in the underlying neural circuit. Such nonlinearity may correspond to different

regimes on the f − I curve of the presynaptic neurons such that different operating ranges

provide different degrees of nonlinearities (from near-linearity to steep non-linearity). An

extra sigmoid transfer function on the output g(y) = 1/(1 + expα(y−β)) controls the sharp-

ness of the unit response. By adjusting these non-linearities, Eq. 1.3 can approximate better

a MAX or a TUNING function:

• When p / qr, the unit approximates a Gaussian-like TUNING, i.e., its response y will

have a peak around some value proportional to the input vector w = (w1, . . . , wN ).

For instance, when p = 1, q = 2 and r = 1/2, the circuits perform a normalized dot-

product with an L2 norm, which with the addition of a bias term may approximate

a Gaussian function very closely (see [Kouh and Poggio, 2004; Serre et al., 2005a] for

details). Indeed when all vectors are normalized, i.e., ||x||2 = ||w||2 =1, the approxi-

mation is exact and for any w, one can compute w∗ such that Eq. 1.2 and Eq. 1.3 are

strictly equivalent (see [Maruyama et al., 1991, 1992]).

• When p ' q + 1 (wj ≈ 1), the unit approximate a MAX function very closely for

larger q values (see [Yu et al., 2002], the quality of the approximation also increases

as the inputs become more dissimilar). For instance, r ≈ 1, p ≈ 1, q ≈ 2 gives a good

approximation of the MAX (see [Serre et al., 2005a] for details).
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Biophysical considerations: The fact that both the MAX and TUNING functions can be

described by the same equation strongly suggests that they may be implemented by the

same biophysical mechanisms. Indeed by simply rearranging the terms in Eq. 1.3 a possi-

ble circuitry becomes more apparent:

y =

n
∑

j=1

w∗
j

xp
j

k +





n
∑

j=1

xq
j





r =

n
∑

j=1

w∗
j

xp
j

Pool
, (1.4)

The equation above suggests that the operation could be carried out by a divisive nor-

malization followed by weighted sum. Normalization mechanisms (also commonly referred

to as gain control) in this case, can be achieved by a feedforward (or recurrent) shunting

inhibition [Torre and Poggio, 1978; Reichardt et al., 1983; Carandini and Heeger, 1994]. For

the past two decades several studies (in V1 for the most part) have provided evidence for

the involvement of GABAergic circuits in shaping the response of neurons [Sillito, 1984;

Douglas and Martin, 1991; Ferster and Miller, 2000]. Direct evidence for the existence of

divisive inhibition comes from an intracellular recording study in V1 [Borg-Graham and

Fregnac, 1998]. [Wilson et al., 94] also showed the existence of neighboring pairs of pyrami-

dal cells / fast-spiking interneurons (presumably inhibitory) in the prefrontal cortex with

inverted responses (i.e., phased excitatory/inhibitory responses). The pyramidal cell could

provide the substrate for the weighted sum while the fast-spiking neuron would provide

the normalization term.

Plausible biophysical circuits based on feedforward or feedback shunting inhibition

were proposed that could implement Eq. 1.3 [Yu et al., 2002; Serre et al., 2005a]. A possible

(feedforward) circuit is sketched in Fig. 1-8 (reproduced from [Serre et al., 2005a]). The

nodes x1 and x2 each represent a computational module composed of n equivalent units,

i.e., units with identical parameters that share the same afferents, but in addition each of

the unit in the module receives an extra normally distributed background input (see Fig. 1-

5). A detailed implementation of the circuit using parameters from experimental data

[Destexhe et al., 1998] was shown to approximate well the two operations (with different

parameter values) over a range of input values (see [Serre et al., 2005a] for details).

Thorpe and colleagues described another related proposal based on the timing of the

arrival of spikes from a group of neurons [Thorpe and Gautrais, 1997; Thorpe et al., 2001a]
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w1

*

* w2

Figure 1-8: A possible cortical circuit for TUNING and MAX operations proposed by Knoblich &
Poggio. The nodes in the circuit correspond to computational modules composed of equivalent
units, see Fig. 1-5. Preliminary results suggest that depending on the balance between excitation
and inhibition (see discussion on Eq. 1.3), the circuit can approximate a MAX or a TUNING operation
(see [Serre et al., 2005a] for details).

(see [Rousselet et al., 2004a] for a recent review). The circuit proposed is very similar to the

one in Fig. 1-8. The main difference is that, in the model by Thorpe, the basic element is a

single neuron (i.e., the model relies on individual spikes) whereas in Fig. 1-8 it is a module

of n identical neurons (i.e., the model relies on the firing rate produced by the ensemble

of neurons). There is now limited evidence for such type of encoding in part from the

somatosensory system [Johansson and Birznieks, 2004] (see [VanRullen et al., 2005] for a

review).

D Original Contributions

D.1 Learning a Dictionary of Shape-Components in Visual Cortex

The model described in Chapter 2 builds upon several existing neurobiological models

and conceptual proposals (see Section C) and, in particular, extends significantly an earlier

approach by [Riesenhuber and Poggio, 1999a]. One of the key new aspect of the model is

the learning of a generic dictionary of shape-components from V2 to IT, which provides

a rich representation to task-specific categorization circuits in higher brain areas. Impor-

tantly, the hierarchical architecture builds progressively more invariance to position and

scale while preserving the selectivity of the units. This vocabulary of tuned units is learned

from natural images during a developmental-like, unsupervised learning stage in which

each unit in the intermediate layers becomes tuned to a different patch of a natural image.

The model is characterized by a large number of tuned units across the hierarchical ar-

chitecture of the model which are learned from natural images and represent a redundant
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dictionary of fragment-like features that span a range of selectivities and invariances. As

a result of this new learning stage, the new architecture contains a total of ∼ 10 million

tuned units. At the top, the classification units rely on a dictionary of ∼ 6, 000 units tuned

to image features with different levels of selectivities and invariances. This is 2 − 3 orders

of magnitude larger than the number of features used by both biological models as well as

state-of-the-art computer vision systems that typically rely on 10-100 features.

D.2 Comparison with Neural Data

As described in Chapter 3, one major advance is that the proposed model is significantly

closer to the anatomy and the physiology of visual cortex with more layers (reflecting

PIT as well as V4) and with a looser hierarchy (reflecting the bypass connections from V2

to PIT and V4 to AIT [Nakamura et al., 1993]). In particular we show in Chapter 3 that

model units are qualitatively and quantitatively consistent with several properties of cells

in V1, V4, and IT. The most significant result is that the tuning of the units in interme-

diate stages of the model that are learned from natural images agrees with data from V4

[Reynolds et al., 1999] about the response of neurons to combinations of simple two-bar

stimuli (within the receptive field of the S2 units). Some of the C2 units in the model show

a tuning for boundary conformations [Pasupathy and Connor, 2001] which is consistent

with recordings from V4 (Serre, Cadieu, Kouh and Poggio, in prep). In addition, unlike

the original model [Riesenhuber and Poggio, 1999a], all the V1 parameters are derived

exclusively from available V1 data and do not depend – as they did in part in the orig-

inal HMAX model – from the requirement of fitting the benchmark paperclip recognition

experiments.

D.3 Comparison with Computer Vision Systems

As described in Chapter 4, another major advance achieved by the model is that, not only

does the proposed architecture duplicates the tuning properties of neurons in various brain

areas when probed with artificial stimuli, but, it can also handle the recognition of objects

in the real-world, to the extent of competing with the best computer vision systems [Serre

et al., 2005b, 2006b]. We also show that a generic dictionary of shape-tuned units learned

from a set of natural images unrelated to any categorization task can support the recogni-
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tion of many different object categories. In addition, we show that the model is remarkably

robust to parameter values, detailed wiring and even exact form of the two basic opera-

tions and of the learning rule.

D.4 Comparison with Human Observers

The most significant result is described in Chapter 5. We compare the performance of the

model and the performance of human observers in a rapid animal vs. non-animal recogni-

tion task for which recognition is fast and cortical back-projections are likely to be inactive.

Results indicate that the model predicts human performance extremely well when the de-

lay between the stimulus and the mask is about 50 ms (Serre, Oliva & Poggio, in prep).

This suggests that cortical back-projections may not play a significant role when the time

interval is in this range, and the model may therefore provide a satisfactory description of

the feedforward path.

Notes

1http://bluebrainproject.epfl.ch

2In [Serre et al., 2005a], we used the term cable instead of computational module, which

consists of several wires (single axons).

3The MAX-like operation does not need to be exact. Indeed, preliminary results sug-

gest that an average pooling mechanism may still provide a scale and translation invariant

representation at the level of IT with minimal loss in recognition performance.

4Note that a more general form of normalization in Eq. 1.3 would involve another set

of synaptic weights w̃ in the denominator, as explored in a few different contexts such

as to increase the independence of correlated signals [Heeger et al., 1996; Schwartz and

Simoncelli, 2001] and the biased competition model of attention [Reynolds et al., 1999].

5An alternative to the tuning operation based on the sigmoid of a normalized dot-product

(see Eq. 1.3) is a sigmoid of a dot-product that is:
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y = g





n
∑

j=1

wj xp
j



 , (1.5)

where g is a sigmoid function given (see above). Eq. 1.5 is less flexible than Eq. 1.3 which

may provide tuning to any arbitrary pattern of activations irrespective of the overall mag-

nitudes of the input activations. On the other hand, the dot-product tuning does not re-

quire any inhibitory elements and may thus be simpler to build. Also, with a very large

number of inputs (high dimensional tuning), the total activation of the normalization pool,

or the denominator in Eq. 1.3, would be more or less constant for different input patterns,

and hence, the dot product and the normalized dot-product may behave very similarly. In

other words, the normalization operation may only be necessary to build a robust tuning

behavior with a small number of inputs, e.g., in early stages such as V1. It is conceivable

that both Eq. 1.3 and Eq. 1.5 are used for tuning, with Eq. 1.5 more likely in later stages

of the visual pathway. In Chapter 4, we confirm that the model exhibits qualitatively sim-

ilar results across several categorization tasks with either operations at the level of the top

layers.



Chapter 2

Theory and Basic Model

Implementation

In Chapter 1, we previously described a core of knowledge, accumulated over the past

40 years, about the organization and architecture of the ventral stream of visual cortex.

In this Chapter, we describe a theory which accounts for these basic facts and a model

implementation derived hereafter which is faithful to the anatomy and physiology of the

ventral stream of visual cortex. Consistent with [Riesenhuber and Poggio, 2000], the model

is composed of two key components: First a generic dictionary of shape components is

extracted from V1 to IT and provide a translation and scale invariant representation that

can be used by higher areas such as PFC to train and maintain task-specific circuits for the

recognition of different object categories.

Section A describes how this dictionary of shape components map into circuits and

cortical areas of the primate visual cortex. In Section B we describe how this vocabulary of

shape-tuned units can be learned, in a development-like unsupervised way, from natural

images. In Section C we suggest how task-specific circuits can be built upon this repre-

sentation. Finally, in Section D, we discuss important aspects of the model, including a

computational analysis as well as possible connections with machine learning and com-

puter vision.



50 CHAPTER 2. THEORY AND BASIC MODEL IMPLEMENTATION

A Building a Dictionary of Shape-Components from V1 to IT

The theory we propose significantly extends an earlier model by [Riesenhuber and Poggio,

1999a] and builds upon several conceptual proposals [Hubel and Wiesel, 1959; Perrett and

Oram, 1993; Rolls, 1995; Hochstein and Ahissar, 2002], computer vision systems [LeCun

et al., 1989; Fukushima, 1980; Mel, 1997; Thorpe, 2002; Ullman et al., 2002; Wersing and

Koerner, 2003; LeCun et al., 2004] and models of object recognition in cortex [Wallis and

Rolls, 1997; Amit and Mascaro, 2003].

A model implementation that reflects the general organization of the ventral stream

of visual cortex from V1 and V2 through V4, TE, TEO and PFC is sketched in Fig. 2-1.

The (tentative) correspondence between the functional primitives and various stages of

the model (right) and cortical stages in the primate visual system (left, modified from Van

Essen & Ungerleider [Gross, 1998]) is color coded. For instance, the S1 and C1 layers are

filled in red as their cortical homologues (areas V1/V2). Along the hierarchy, from V1 to

IT, two functional stages are interleaved to provide a basic object representation in IT that

be read out by higher cortical stages to perform a large array of visual tasks. Those two

stages are:

• Various stages of simple (S) units (plain circles and arrows) build an increasingly

complex and specific representation by combining the response of several subunits

with different selectivities with a TUNING operation (see Eq. 1.2 and Chapter 1 for

details);

• Various stages of complex (C) units (dashed circles and arrows) build an increasingly

invariant representation (to position and scale) by combining the response of several

subunits with the same selectivity but at slightly different position and scales with a

MAX-like operation (see Eq. 1.1 and Chapter 1 for details).

In the following, starting with V1, we provide a thorough description of the different

stages of the model.

A.1 Simple and Complex Cells in V1

The input to the model is a gray-value image. Typically, images used range between

140 × 140 pixels and 256 × 256 pixels corresponding to about 4o and 7o of visual angle

respectively.1
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Figure 2-1: Tentative mapping between (right) the functional primitives and layers of the model
and (left) cortical stages in the primate visual system (modified from Van Essen & Ungerleider
[Gross, 1998]). The correspondences are illustrated with colors (see text). Stages of simple (S) units
(plain circles) build an increasingly complex and specific representation by combining the response
of several subunits with different selectivities (see text) and exhibit a Gaussian-like TUNING (see
Eq. 1.2). Layers of simple units are interleaved with layers of complex units (dotted circles) which
combine several units with similar selectivities but slightly different positions and scales to increase
invariance to object transformations (pooling over scales is not shown in the figure). The pooling
operation at the complex unit level is a MAX-like operation [Gawne and Martin, 2002; Lampl et al.,
2004]. Both operations may be performed by the same local recurrent circuits of lateral inhibition
(see Chapter 1). Black arrows correspond to the main route providing the main inputs to IT (the
final purely visual cortical area in the ventral stream). Light blue arrows illustrate the bypass routes
(see text). Learning at the level of the S units from V2 up to IT is assumed to be stimulus-driven.
Visual experience shape the TUNING of the units through task-independent mechanisms (see Sec-
tion B). Supervised learning occurs at the level of the task-specific circuits in PFC (two sets of
possible circuits for two of the many different recognition tasks – identification and categorization
– are indicated). The model which is feedforward (apart from local recurrent circuits) attempts to
describe the initial stage of visual processing, i.e., immediate recognition, corresponding to the first
150 milliseconds of visual recognition.
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Figure 2-2: Receptive field organization of the S1 units. There are 136 different types of S1 units:
2 phases× 4 orientations× 17 sizes (or equivalently peak frequencies). Only units at one phase are
shown but the population also includes filters of the opposite phase. Receptive field sizes range
between 0.2o − 1.1o (typical values for cortex range between (≈ 0.1o − 1o, see [Schiller et al., 1976e;
Hubel and Wiesel, 1965]). Peak frequencies are in the range 1.6− 9.8 cycles/deg.

S1 units: The input image is first analyzed by an a multi-dimensional array of simple S1

units which correspond to the classical V1 simple cells of Hubel & Wiesel (see Chapter 1).

Model S1 units follow the basic model of simple cells, i.e., half-rectified filters consisting of

aligned and alternating ON and OFF subregions, which share a common axis of elongation

that defines the cell preferred orientation.2

The population of S1 units consists in 96 types of units, i.e., 2 phases× 4 orientations×

17 sizes (or equivalently peak spatial frequencies3). Fig. 2-2 shows the different weight

vectors corresponding to the different types of units (only one phase shown). Each portion

of the visual field (i.e., each pixel location in the input image) is analyzed by a full set of

the 96 unit types which may correspond to one macro-column in V1 [Hubel and Wiesel,

1977]. This is illustrated in Fig. 2-3.4

S1 units, like other simple units in the model, perform a TUNING operation between

the incoming pattern of input x and their weight vector w. The response of a S1 unit

is maximal when x matches w exactly. Typically a high response is elicited when the

orientation of the stimulus, e.g., a bar of optimal width and height, an edge or a grating at

the optimal spatial frequency, matches the filter orientation and the response drops-off as

the orientation of the stimulus and the filter becomes more dissimilar (see Fig. 2-4).

Mathematically the weight vector w of the S1 units take the form of a Gabor func-

tion [Gabor, 1946] (see Eq. A.3 in Appendix A), which have been shown to provide a

good model of simple cell receptive fields [Marcelja, 1980; Daugman, 1980a,b; Hawken

and Parker, 1987; Jones and Palmer, 1987]. In setting the S1 unit parameters we tried to

generate a population of units that match the bulk of parafoveal cells as closely as possible

(see Chapter 3). The complete parameter set used to generate the population of S1 units is
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Figure 2-3: Functional “columnar” organization in the model. Each basic mini-column contains a
set of units all with the same selectivities, i.e., sharing the same weight vector w (e.g., a bar at a
particular orientation at the S1 level) but different scales (e.g., 17 different scales/peak frequencies
at the S1 level). Each portion of the visual field is analyzed by a macro-column which contains all
types of mini-columns (e.g., 4 different orientations and 2 phases in the S1 case). The same organi-
zation is repeated in all layers of the model with increasingly complex and invariant units. Also
note that there is a high degree of overlap in the portions of the visual field covered by neighboring
macro-columns. Importantly note that we refer to columns in the model as functional primitives by
analogy to the organization of visual cortex. Whether or not such functional columns in the model
correspond to structural columns in cortex is still an open question.

given in Appendix A and a comparison between model S1 units and V1 parafoveal cells is

summarized in Chapter 3.

C1 units: The next C1 level corresponds to striate complex cells [Hubel and Wiesel, 1959].

Each of the complex C1 unit receives the outputs of a group of simple S1 units from the first

layer with the same preferred orientation (and two opposite phases) but at slightly differ-

ent positions and sizes (or peak frequencies). The operation by which the S1 unit responses

are combined at the C1 level is a nonlinear MAX-like operation such that the response of

the C1 unit is determined by the strongest of all its inputs. As discussed in Chapter 1,

this non-linear pooling operation provides an increase in the tolerance to changes in po-
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Figure 2-4: One S1 unit and its
corresponding orientation tuning
curve obtained with three classi-
cal stimuli, i.e., optimal bar (see
black rectangle superimposed on
the unit receptive field), optimal
grating and edge.
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sition and scale from the S1 to the C1 layers while avoiding the superposition problem,

e.g., a unit performing a SUM over its inputs could not discriminate between the presence

of many weak stimuli and the presence of its preferred (optimal) stimulus.

This principle is illustrated in Fig. 2-5. For clarity we depict pooling over space and

pooling over position as two separate mechanisms but in the model implementation both

pooling over space and scale are performed in one single operation. By pooling over S1

units at slightly different positions but same preferred orientation, the corresponding C1

unit becomes insensitive to the location of the stimulus within its receptive field, which is

a hallmark of the complex cells [Hubel and Wiesel, 1959, 1962, 1965, 1968]. The effect of

the pooling over S1 units at slightly different peak frequencies (or scale) is a broadening

of the frequency bandwidth from S1 to C1 units also in agreement with physiology [Hubel

and Wiesel, 1968; Schiller et al., 1976e; DeValois et al., 1982a] (see also Chapter 3), i.e., the

larger the pooling range, the broader the frequency bandwidth.

Similarly the size of the spatial neighborhood over which the C1 units pool over deter-

mines its receptive field size. From S1 to C1 receptive field sizes double (from 0.2o − 1.0o

in S1 layer to 0.4o − 2.0o in C1 layer) 5. As for the S1 units, the values of the two pooling

parameters were manually adjusted so that the tuning properties of the corresponding C1

units match closely those of V1 parafoveal complex cells (see Chapter 3). A summary of

the C1 parameter values can be found in Appendix A.

The plausibility of such MAX pooling mechanisms over simple cells at different posi-

tions at the complex cell level has been more directly tested by Lampl et al. [Lampl et al.,

2004] via intracellular recordings from area 17 of the cat (homologous to V1 in monkey).

Fig. 1-7 (reproduced from [Lampl et al., 2004]) illustrates one such cortical complex cell
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Figure 2-5: How tolerance to scale (b) and position (a) is gained from the S1 to the C1 layer: Each
C1 unit receives its inputs from S1 units at the same preferred orientation (e.g., 0o) but (two) slightly
different peak frequencies and positions (e.g., within a small 3×3 spatial neighborhood). When the
input letter is shifted from position 1 to 2 (a), it activates in turn S1 units at two different positions.
By pooling the activity of all the units in the neighborhood the C1 unit becomes insensitive to
the location of the stimulus. Similarly for invariance to scale (b), when the size of the letter is
reduced from 1 to 2, the S1 unit maximally activated changes from the larger to the smaller S1 unit.
By pooling the activity of S1 units at different scales (or peak frequencies) the C1 unit becomes
insensitive to small changes in scale. For illustration purpose, we show the pooling over space and
scale as separate processes but in the model implementation this is done in one stage.

which performs a MAX operation over its afferents: The response of the cell to two simul-

taneously presented bars is determined by the strongest response of the cell when the two

bars are presented in isolation.

A.2 Beyond V1: Features of Moderate Complexity

In the next stages of the model, by interleaving these two operations, i.e., MAX over retino-

topically organized inputs with the same preferred stimulus but slightly different posi-

tions and scales and TUNING over inputs with different preferred stimuli, an increasingly

complex and invariant representation is built [Kobatake et al., 1998]. From V1, the visual

information is routed to V2, V4 and IT, which has been shown to be critical in the ability of

primates to perform invariant recognition. This is done via two routes: a main route that

follows the hierarchy of cortical stages strictly (i.e., step-by-step) as well as several bypass

routes which skip some of the stages (see Fig. 2-1). We suggest that bypass routes may help

create a richer repertoire of features with various degrees of selectivities and invariances.



56 CHAPTER 2. THEORY AND BASIC MODEL IMPLEMENTATION

S1

C1

C2

S2

N C1

S

N C1
S

NS2

NS2

TUNING

TUNING

MAX

MAX

2   visual angle
o

0.2 -1.1
o o

0.4 -1.6
o o

0.6 -2.4
o o

1.1 - 3.0
o o

Figure 2-6: Building S2 and C2 units. A gray-value input image is first analyzed by functionally
organized (see Fig 2-3) S1 units at all locations. At the next C1 layer, a local MAX pooling operation
is taken over retinotopically organized S1 units at neighboring positions and scales but with the
same preferred orientation (presumably within adjacent macro-columns) to increase invariance to
position and scale. In the next S2 stage, a TUNING operation is taken over C1 units at different
preferred orientations to increase the complexity of the optimal stimulus: The S2 receptive fields
thus correspond to the nonlinear combination of V1-like oriented subunits. S2 units are selective
for features of moderate complexity [Kobatake et al., 1998] (examples shown in yellow next to the
S2 unit). We only show one type of S2 units but in the model implementation, by considering
different combinations of C1 units (learned from natural images), we obtained n ≈ 1, 000 different
types of S2 units. Also note that S2 units are also organized in columns (not shown here) such that
each column contains all n types of S2 units at different scales and analyzes a small region of the
visual field. A local MAX pooling operation is performed over S2 units with the same selectivity
over neighboring positions and scales to yield the C2 unit responses.
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Main route

At the S2 level, units pool the activities of several retinotopically organized complex C1

units at different preferred orientations over a small neighborhood (again the size of the

neighborhoods determine the size of the receptive field of the S2 unit). The computation

performed during pooling is the TUNING operation. As a result, from C1 to S2 units, both

the selectivity of the units and the complexity of their preferred stimuli are increased.

This is illustrated in Fig. 2-6. At the C1 level units are selective for single bars at a partic-

ular orientation, whereas at the S2 level, units becomes selective to more complex patterns

– such as the combination of oriented bars to form contours or boundary-conformations

[Pasupathy and Connor, 2001] (see Chapter 3). Receptive field sizes at the S2 level range

between 0.6o − 2.4o.

Beyond the S2 layer, the tuning (i.e., the input weights) of all S units is learned, in an

unsupervised manner, from natural images (see Section B). In Fig. 2-6 only one type of

S2 unit is shown but in the model implementation, there is n ≈ 1, 000 types of S2 units

that correspond to different combinations of complex C1 unit responses. Also in the model

implementation, the S2 layer is organized in overlapping columns such that a small part

of the visual field is analyzed by one such column which contains all n unit types at all

scales (i.e., 8 different scales coming from the 8 C1 scales).

In the next C2 stage, units pool over S2 units that are tuned to the same preferred

stimulus (they correspond to the same combination of C1 units and therefore share the

same weight vector w) but at slightly different positions and scales. C2 units are therefore

selective for the same stimulus as their afferents S2 units. Yet they are less sensitive to

the position and scale of the stimulus within their receptive fields. Receptive field sizes at

the C2 level range between 1.1o − 3.0o. As indicated in Fig. 2-1 and as we show in more

detail in Chapter 3 (see also [Cadieu, 2005]), we found that the tuning of model C2 units

(and their invariance properties) to different standard stimuli such as Cartesian and non-

Cartesian gratings, two-bar stimuli and boundary conformation stimuli is compatible with

data from V4 [Gallant et al., 1996; Pasupathy and Connor, 2001; Reynolds et al., 1999].

The precise correspondence of the S2 units (recall that S2 units exhibit the same se-

lectivity as the C2 units but exhibit a lesser range of invariance) is less constrained. We

speculate that S2 units are likely to be found principally in layer IV of area V4 or the most
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superficial layers of V2 possibly corresponding to the most “elaborate” types of cells in V2.

Indeed V2 studies have reported a wide array of cell types with different degrees of com-

plexity, from the simplest neurons being selective to V1-like oriented stimuli [Burkhalter

and Essen, 1986; Gegenfurtner et al., 1996], to the most complex ones being selective to

V4-like stimuli, i.e., intersections, arcs, circles, texture patterns such as sinusoidal and non-

Cartesian gratings [Kobatake and Tanaka, 1994; Hegdé and van Essen, 2000, 2003] and

angle stimuli [Ito and Komatsu, 2004]. Recently [Boynton and Hegdé, 2004] suggested

that V2 selectivity could be explained by the non-linear combination of V1-like subunits

(i.e., precisely what S2 units do).

Beyond S2 and C2 units the same process is iterated once more to increase the complex-

ity of the preferred stimulus at the S3 level (possibly related to Tanaka’s feature columns

in TEO, see below), where the responses of a few C2 units (≈ 100) with different selec-

tivities are combined with a TUNING operation to yield even more complex selectivities.

In the next stage (possibly overlapping between TEO and TE), the complex C3 units, ob-

tained by pooling S3 units with the same selectivity at neighboring positions and scales,

are also selective to moderately complex features as the S3 units but with a larger range of

invariance.

The S3 and C3 layers provide a representation based on broadly tuned shape-components.

The pooling parameters of the C3 units (see Appendix A) were adjusted so that, at the next

stage, units in the S4 layer exhibit tuning and invariance properties similar to those of the

so-called view-tuned cells of AIT [Logothetis et al., 1995] (see Chapter 3). The receptive

field sizes of the S3 units are about 1.2o − 3.2o while the receptive field sizes of the C3 and

S4 units are at least 4o, i.e., covers the whole stimulus.

Bypass routes

Besides the main route that follows stages along the hierarchy of the ventral stream step-

by-step, there exist several routes which bypass some of the stages, e.g., direct projections

from V2 to TEO [Boussaoud et al., 1990; Nakamura et al., 1993; Gattass et al., 1997] (by-

passing V4) and from V4 to TE (bypassing TEO) [Desimone et al., 1980; Saleem et al., 1992;

Nakamura et al., 1993]. While the main route constitutes the major source of inputs to

IT [Tanaka, 1996], bypass routes remain a significant source of inputs. For instance, TE

remains visually connected even after lesions of V4 and/or TE [Buffalo et al., 2005]. In-
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deed deficits in discrimination tasks are only moderate after V4 [Schiller and Lee, 1991;

Schiller, 1993, 1995; Buffalo et al., 2005] lesions and/or TEO lesions [Buffalo et al., 2005]6.

Also lesion studies have shown that only a limited impairment in fine discrimination tasks

[Merigan et al., 1993] was observed after V2 lesions suggesting that routes bypassing V2

(e.g., directly from V1 to V4 [Nakamura et al., 1993]) may play an important role.

In the model, such bypass route corresponds to the projections from the C1 layer to the

S2b and then C2b layers (where the ’b’ stands for ’bypass’). S2b units combine the response

of several retinotopically organized V1-like complex C1 units at different orientations just

like S2 units. Yet the receptive field size of the corresponding S2b units is larger (2 to

3 times larger) than the receptive field size of the S2 units. Importantly, the number of

afferents to the S2b units is also larger (100 afferents vs. 10 only for S2 units), which results

in units which are more selective and more ”elaborate” than the S2 units, yet, less tolerant

to deformations. The effect of skipping a stage from C1 to S2b not only results in units at

the C2b level that are more selective than other units at a similar level along the hierarchy

(C3 units), but that also exhibit a lesser range of invariance to positions and scales.

There could be many advantages for a visual system to not only rely on a main (step-

by-step) route but also includes bypass routes in parallel. Beyond the obvious robustness

to lesions, we speculate that bypass routes may help provide a richer vocabulary of shape-

tuned units with different levels of complexity and invariance. Experimentally, we found

that, while the level of performance on various categorizations tasks of individual model

layers (i.e., C2 vs. C2b vs. C3 units) are fairly similar, their combination, however, provide a

significant gain in performance.

A Loose hierarchy

It should be emphasized that the various layers in the architecture – from V1 to TEO –

create a large and redundant dictionary of features with different degrees of selectivity

and invariance.7 Yet, it may be advantageous for circuits in later stages (say task-specific

circuits in PFC) to have access not only to the highly invariant and selective units of AIT

but also to less invariant and simpler units of the V2 and V4 type. Very fine orientation

discrimination tasks, for instance, certainly require information from lower levels of the

hierarchy such as V1. There might also be high level recognition tasks that benefit from

less invariant representations.
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For instance, recent work by Wolf & Bileschi has shown that the recognition perfor-

mance of the model on real-world image databases (see Chapter 4) including different

object categories with large variations in shape but limited ranges of positions and scales

could be further improved by 1) restricting the range of invariances of the top units and

2) passing some of the C1 unit responses to the classifier along with the top unit responses

[Wolf et al., 2006; Bileschi and Wolf, 2006]. We also found in the animal vs. non-animal cat-

egorization task in Chapter 5 that the performance is improved with S4 units that not only

receive their inputs from the top C3 and C2b units but also from low-level C1 units (with

much more limited invariance to position and scale). Finally preliminary computational

experiments by Meyers & Wolf suggest for instance that “fine” recognition tasks (such as

face identification) may benefit from using units in lower stages (such as C1 and S2 units).

Though the present implementation follows the hierarchy of Fig. 2-1, the hierarchy

may not be as strict. For instance there may be units with relatively complex receptive

fields already in V1 [Mahon and DeValois, 2001; Victor et al., 2006]. A mixture of cells with

various levels of selectivity has also commonly been reported in V2, V4 and TEO [Tanaka,

1996]. Hubel & Wiesel already pointed out that the hierarchy of V1 cells they described

(i.e., circular symmetric < simple < complex < hypercomplex) may not be as strict [Hubel and

Wiesel, 1977]. For instance, they (and others) have found cells of the hypercomplex type

(showing suppression to elongated bars) but relatively sensitive to the position of the stim-

ulus within their receptive field (like simple cells). In addition, it is likely that the same

stimulus-driven learning mechanisms implemented for S2 units and above (see Section B)

operate also at the level of the S1 units. This may generate S1 units with TUNING not only

for oriented bars but also for more complex patterns (e.g., corners), corresponding to the

combination of LGN-like, center-surround subunits.

In cortex there exist at least two ways by which the response from lower stages could be

incorporated in the classification process: 1) Through bypass routes (see above, for instance

through direct projections between intermediate areas and PFC) and/or 2) by replicating

some of the unit types from one layer to the next. This would suggest the existence of cells

such as V1 complex cells along with the bulk of more “elaborate” cells in the various stages

of visual cortex. We are of course aware of the potential implications of observation (1) for

how back-projections could gate and control inputs from lower areas to PFC in order to

optimize performance in a specific task (see Chapter 6). From the same point of view,
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direct connections from lower visual areas to PFC make sense computationally.

The number of subunits should increase from V1 to IT thus increasing the complex-

ity of the preferred stimulus (this could also produce simple units with broader ranges

of invariances for instance). Importantly the size of the receptive fields and the potential

complexity of the optimal TUNING grow in parallel. Finally, in the present model imple-

mentation, the two layers of simple and complex units alternate from S1 to S4 though

levels could be conceivably skipped, see [Riesenhuber and Poggio, 1999a]. In particular,

consistent with the current model implementation, after sufficient position and scale in-

variance is obtained (at the C2b and C3 layers), it is likely that only cells of the S type

follow each other.

A.3 Invariant Recognition in IT

IT is believed to play be key in the ability of primates to perform invariant object recog-

nition [Tanaka, 1996]. Based on lesions studies, IT is generally subdivided into two sub-

regions, i.e., posterior (PIT) and anterior (AIT) cortices that are roughly coextensive with,

but not identical to, the cytoarchitectonic TE and TEO subdivisions [Logothetis and Shein-

berg, 1996]. It has been reported that the selectivity of neurons in TEO and V4 are similar,

only the topography is coarser and the receptive fields are larger in TEO [Boussaoud et al.,

1991]. Indeed lesions to either V4 and TEO leads to similar deficits [Buffalo et al., 2005]

in filtering out distractors at the level of TE. It is therefore likely that there is a lot of over-

lap between these regions and correspondence with model layers may only be vague. In

Chapter 3 we show that the selectivity of the C2 units seem compatible with the tuning of

neurons in V4. The range of invariances of the C2 units was determined in [Cadieu, 2005]

so that it is compatible with the range of invariance of V4 neurons [Pasupathy and Con-

nor, 2001]. It is possible that C2 units extend in TEO. It might also be that experimentalists

were recording from neurons more similar to model S2b and C2b units. Like S2 units, S2b

also receive afferents from V1-like units, yet, because of their position along the hierarchy

(pyramidal cells may cover larger extents in space and are more spinous [Elston, 2003]),

they receive a larger number of retinotopically organized afferents, have larger receptive

fields and are therefore more selective (in the model S2b units receive inputs from 100 af-

ferents whereas S2 units receive only 10 afferents).
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As one progresses from the posterior part of TEO to the most anterior part of TE, the

topography is almost completely lost and the size of the receptive field sizes increase sig-

nificantly (receptive field sizes can be as small as 1.5o− 2.5o in TEO [Logothetis and Shein-

berg, 1996]) so as to cover large parts of the visual field (up to 30o − 50o [Boussaoud et al.,

1991; Tanaka, 1993] in TE). This increase in the receptive field sizes is also accompanied by

a significant increase in the complexity of the preferred stimulus (from simple stimuli to

complex shapes such as faces or hands), [see Logothetis and Sheinberg, 1996]. It is there-

fore likely that S3 units may overlap between TEO and TE (S3 units receive inputs from

several V4-like cells with limited invariance). C3 units that cover a range of invariance of

about ±2o in translation and ≈ 2 octaves in scale are likely to be found more anteriorly in

TE (see Chapter 3). Neurons that respond to parts of objects, e.g., the eyes [Perrett et al.,

1982, 1992], may correspond to S2b or C2b units (depending on their invariance properties),

while neurons that require the simultaneous presentation of multiple parts of a face [Per-

rett and Oram, 1993; Wachsmuth et al., 1994] may correspond to S3, C3 or maybe even S4

units (see Section C).

As we discussed in Chapter 1, one unit in the model may be described best by a compu-

tational module, composed of a set of n equivalent neurons, i.e., receiving the same inputs. It

is therefore not surprising to find columns of features in IT [Fujita et al., 1992; Wang et al.,

1996; Tanaka, 1996, 1997; Wang et al., 1998; Tanaka, 2003]. A natural question to ask is to

compare the size of the vocabulary of the shape tuned units used in the model at the level

of IT with the number of columns of features found in IT. In [Serre et al., 2005b] (see also

B), we evaluated the categorization performance of a linear classifier (SVM and Ada-Boost)

that uses as an input, a subset of the dictionary of shape component units from the model.

While the performance increases monotonically when increasing the number of features

used, we found that the level of performance reaches a ceiling between 1, 000 − 5, 000

features. The comparison with cortex becomes quiet remarkable: Tanaka and colleagues

[Fujita et al., 1992] estimated the number of columns in TEd to be ≈ 2, 000!
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B Learning a Dictionary of Shape-Components from Natural Im-

ages

B.1 On Learning Correlations

Various lines of evidence suggest that visual experience – during and after development

– together with genetic factors determine the connectivity and functional properties of

cells in cortex (see Chapter 1). In this work, we assume that learning plays a key role in

determining the wiring and the synaptic weights for the model units.

More specifically, we suggest that the TUNING properties of simple cells – at various

levels in the hierarchy – correspond to learning which combinations of features appear

most frequently in images. This is roughly equivalent to learning a dictionary of image

patterns that appear with higher probability. The wiring of the S layers depends on learn-

ing correlations of features in the image at the same time (i.e., for S1 units, the bar-like

arrangements of LGN inputs, for S2 units, more complex arrangements of bar-like sub-

units, etc ).

The wiring of complex cells, on the other hand, may reflect learning from visual ex-

perience to associate frequent transformations in time – such as translation and scale – of

specific complex features coded by simple cells. The wiring of the C layers reflects learn-

ing correlations across time, e.g., at the C1 level, learning that afferent S1 units with the

same orientation and neighboring locations should be wired together because, often, such

a pattern changes smoothly in time (under translation) [Földiák, 1991].

Thus learning at the S and C levels is learning correlations present in the visual world.

At present it is still unclear whether these two types of learning require different types of

synaptic “rules” or not.

B.2 The Learning Rule

The goal of this learning stage is to determine the selectivity of the S units, i.e., set the

weight vector w (see Eq. 1.2) of the units in layers S2 and higher. More precisely, the

goal is to define the basic types of units in each of the macro-columns (see Fig. 2-3). We

suggest that these macro-columns (or feature-maps) constitute a basic dictionary of shape-

components with units that are tuned to image-features that occur with high probability in
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natural images.

This is a very simple and natural assumption. Indeed it follows a long tradition of re-

searchers that have suggested that the visual system, through visual experience and evo-

lution, may be adapted to the statistics of its natural environment [Attneave, 1954; Barlow,

1961; Atick, 1992; Ruderman, 1994] (see also [Simoncelli and Olshausen, 2001] for a recent

review). For instance, [Attneave, 1954] proposed that the goal of the visual system is to

build an efficient representation of the visual world and [Barlow, 1961] emphasized that

neurons in cortex try to reduce the redundancy present in the natural environment.

More recently, theoretical studies have shown that receptive fields that resemble cells

in primary visual cortex can be learned (through non-biological optimization techniques)

based on several learning principles, e.g., sparseness [Olshausen and Field, 1996] (min-

imizing the number of units active for any input), statistical independence [Hyvärinen

and Hoyer, 2001] or even temporal continuity and slowness [Wiskott and Sejnowski, 2002;

Körding et al., 2004; Berkes and Wiskott, 2005]. Regularities in natural visual scenes may

also provide critical cues to the visual system to solve specific tasks [Richards et al., 1992;

Knill and Richards, 1996; Callaway, 1998b; Coppola et al., 1998] or even provide a teaching

signal [Barlow, 1961; Sutton and Barto, 1981; Földiák, 1991] for learning with no supervi-

sion.

In the model, we assume that this learning stage is unsupervised and may occur during

a developmental-like learning stage . It is likely that new features may be learned after this

initial learning stage during adulthood (certainly at the level of IT [Logothetis et al., 1995;

Kobatake et al., 1998; Booth and Rolls, 1998; Sigala and Logothetis, 2002; Baker et al., 2002]

and even in intermediate [Yang and Maunsell, 2004; Rainer et al., 2004] and lower areas

[Singer et al., 1982; Karni and Sagi, 1991; Yao and Dan, 2001; Schuett et al., 2001; Crist et al.,

2001], see Chapter 1), possibly in a category- or task-specific manner as people become

experts for specific recognition problems9 Yet, our results suggest that it is possible to

perform robust invariant object recognition from a generic set of shape-tuned units learned

with no supervision [Riesenhuber and Poggio, 1999a] from a general set of natural images

unrelated to any categorization task.

Learning in the model is sequential, i.e., layers are trained one after another (all images

from the database are presented during the training of each individual layers) starting

from the bottom with layers S2 and S2b and then progressing to the top with layer S3.10
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Figure 2-7: Sample natural images used to expose the model and learn the generic dictionary of
shape-components from V2 to IT.

During this developmental stage, the weights (w1, . . . ,wn), i.e., the preferred stimulus,

of the S units within each mini-column which are shared across all macro-columns in the

layer, are learned sequentially starting with w1 and ending with wn. At the kth image

presentation, one macro-column (which corresponds to a particular portion of the visual

field and scale) is selected (at random) and unit wk from this macro-column is imprinted,

i.e., the unit stores in its synaptic weights the current pattern of activity from its afferent

inputs in response to the part of the natural image that fell within its receptive field. This

is done by setting wk to be equal to the current pattern of pre-synaptic activity x.11 As

a result, the image patch x that falls within the receptive field of unit wk becomes its

preferred stimulus. After this imprinting process, the unit is mature.

During this learning stage, we also assume that the image moves (shifting and loom-

ing) so that the selectivity of the unit wk is generalized within the same mini-column to

units at different scales (looming) and across macro-columns (shifting) to units at different

locations in the visual field with a generalized Hebbian rule [Földiák, 1991] (see Subsection

B.1). Note that we did not implement this generalized Hebbian rule, and simply “tiled”

unit wk across scales and positions.

Learning all n S unit types within one layer thus requires exposing the model with

n images. The database of images we used contained a large variety of natural images
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collected from the web (including landscapes, street scenes, animals, etc ), see Fig. 2-7 for

examples. The dictionary of shape components learned during this developmental learn-

ing stage is generic in that, as we show in Chapter 4, the same basic dictionary can be

used for the robust and invariant recognition of many different object categories. After-

ward, only the task-specific circuits from IT to PFC required learning for the recognition of

specific objects and object categories.

C Building Task-Specific Circuits from IT to PFC

We assume that a particular program or routine is set up somewhere beyond IT (possibly in

PFC [Scalaidhe et al., 1999; Freedman et al., 2002, 2003; Hung et al., 2005] but the exact locus

may depend on the task). In a passive state (no specific visual task is set) there may be a

default routine running (perhaps the routine: what is there?). Here we think of this routine

as a particular PFC-like classification unit which combines the activity of a few hundred

S4 units tuned to examples of the target object (as well as distractors). While learning in

the model from S2 to S4 is stimulus-driven, the PFC-like classification units are trained in a

supervised way.

S4 view-tuned units: Consistent with a large body of data that suggests that the selec-

tivity of neurons in IT depends on visual experience (particularly training) and that the

corresponding learning-related changes may be very fast (see Chapter 1), we assume that,

when a new task is being learned, S4 units which correspond to the so-called view-tuned

cells of AIT, become selective to specific examples of the training set (e.g., views of the

target objects). This is in good agreement with the specificity of IT neurons to certain

object views or lighting conditions. For example, [Logothetis et al., 1995] found that af-

ter training monkeys to perform an object recognition task with isolated views of novel

three-dimensional paperclip objects, the great majority of neurons selectively tuned to the

training objects were view-tuned to one of the training objects. About one tenth of the

tuned neurons were view-invariant, consistent with an earlier computational hypothesis

[Poggio, 1990].

In the present model implementation, during the training of the task-specific circuits, a

small fraction (≈ 25%) of the training set of objects (for instance examples of cats and dogs

for a cat vs. dog discrimination task) is stored at the level of the S4 units. Just like units in
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lower stages become tuned to patches of natural images, S4 units become tuned to views

of the target object by storing in their synaptic weights the precise pattern of activity from

their afferents during a presentation of a particular exemplar.

It is important to point out that, consistent with the notion of a loose hierarchy de-

scribed in Section A, we found that, while using the S4 stage improves the overall per-

formance of the model, reasonably good results can be obtained without this S4 stage.

Robust invariant recognition performance can be obtained by a linear classifier that uses

part of the dictionary of shape-components directly. In particular, in [Serre et al., 2005b],

we showed that the same linear SVM classifier as in [Hung et al., 2005] (see above) actu-

ally competes with some of the best computer vision systems when using the model C2b

features as inputs (see also Chapter 4).

PFC-like classification units: The proposal that classification tasks could be performed

in cortex by a linear classifier in higher areas (such as PFC) that integrates the activity

of a few hundred neurons from the example-based view-tuned units in the S4 layer (cor-

responding to cells in IT) was originally formulated by [Poggio and Edelman, 1990] to

explain view-invariant recognition and later extended in [Riesenhuber and Poggio, 2000].

The concept of a linear classifier that takes its inputs from a few broadly tuned example-

based units is a powerful learning scheme that is closely related to Radial Basis Func-

tion (RBF) networks, which is among the most powerful in terms of learning to generalize

[Poggio and Girosi, 1990; Poggio and Smale, 2003]. Computer simulations have shown

the plausibility of this scheme for visual recognition and its quantitative consistency with

many data from physiology and psychophysics [Poggio and Bizzi, 2004]. In particular,

[Poggio and Bizzi, 2004] suggested that the broad tuning of units in IT may be key in

providing good generalization properties to classification units beyond IT (for instance to

limited changes in pose, illumination, etc).

Interestingly, a recent study by [Hung et al., 2005] demonstrated that a linear classifier

can indeed read-out with high accuracy and over extremely short times (a single bin as

short as 12.5 millisecond) object identity, object category and other information (such as

position and size of the object) from the activity of about 100 neurons in IT.

In the model, the response of a PFC-like classification unit with input weights c =

(c1, . . . , cn) is given by:
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f(x) =
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characterizes the activity of the ith S4 unit, tuned to the training example xi, in response

to the input image x and was obtained by replacing the weight vector w in Eq. 1.2 by the

training example xi, i.e., w = xi. The superscript i indicates the index of the image in

the training set and the subscript j indicates the index of the pre-synaptic unit. Super-

vised learning at this stage involves adjusting the synaptic weights c so as to minimize the

overall classification error on the training set E, such that:

E =

l
∑

i=1

||f(xi)− yi||2 + R(f). (2.2)

where yi corresponds to the true label (0 − 1) of the training example xi and f(xi) corre-

sponds to the response (or prediction) of the classification unit to example xi.

R(f) = λ||f || is a regularization term which enforces a smoothness criterion on the func-

tion f and which could be omitted for simplicity. Neglecting R(f) for simplicity, minimiz-

ing E corresponds to minimizing the classification error on the training set.12

In the current model implementation, one PFC-like classification unit is trained for each

categorization task. For instance, for the model to be able to recognize all objects from

the CalTech-101 database (see Chapter 4), 101 different PFC-like units fh with different

synaptic weights ch are being trained, one for each of 101 objects vs. the rest. For a new

image presentation, the label h of the PFC-like unit fh with the maximal output across

all PFC-like units is considered the final model response. Alternatively the model can be

tested in an object present/absent task like the animal present/absent task described in

Chapter 5 by comparing the output of one PFC-like unit f o ∈ [0, 1] trained on an animal

vs. non-animal to a fixed threshold f o ≶ θ.

One may raise the concern that training the model for all possible categories in the

world would lead to an intractable number of units in the model. Yet, this is not the case.

First, as we discussed earlier, it is possible to skip the S4 stage and maintain a high level

of performance (the S4 stage may only correspond to objects for which we are expert or

highly familiar with, e.g., faces or body parts, cars, places, etc. Training the model to

recognize a plausible number of discriminable objects (i.e., probably no more than 30, 000

[Biederman, 1987]), would add ∼ 3 million S4 units (assuming a realistic ∼ 100 S4 per
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class). The number of neurons in AIT is ∼ 15 million in each hemisphere [J. DiCarlo, Pers.

Comm.]. At the PFC-like level the number of classification units required would be very

small ∼ 100, 000. It is also very likely that in cortex the same units would be involved in

different categorization tasks [E. Miller, Pers. Comm.]. Key in the model is the use of a

generic dictionary of shape components common to most object and therefore prevent an

explosion in the number of units needed for recognition.

In summary: To perform a new categorization task (for instance a cat vs. dog categoriza-

tion task [Freedman et al., 2001]), the model is trained in a supervised way by:

1. Storing part (≈ 25%) of the training examples (i.e., images of cats and dogs, the exact

number may vary) at the level of the S4 units;

2. Training the task-specific circuits from IT to PFC by setting the synaptic weights c of

an PFC-like cat vs. dog classification denoted f o ∈ [0, 1] so as to minimize the classifi-

cation error on the training set;

3. To evaluate the model performance, a model prediction is obtained for each image

x from a test set of images (disjoint from the training set) by thresholding the unit

response f o(x) ≶ θ. An average classification error is computed by counting the

number of mismatches between the model prediction and the true label of all images.

On the difference between S4 and categorization units: Would a physiologist be able

to tell apart a S4-like cell from a classification cell in cortex? First, based on its dense

connectivity with other cortical and subcortical areas as well as its potential involvement

in representing stimulus-reinforcement associations and reward [Rolls, 2000; Tremblay and

Wolfram, 2000], PFC is likely to be a prime location for the classification cells. Conversely,

we expect most S4-like (view-tuned) cells to be found in AIT/TE and STS (see Chapter

1). An objective criterion may require a measure of category selectivity, e.g., the category

index used by [Freedman et al., 2002], which has been shown to be higher for neurons in

PFC than in IT in monkeys that have been trained to discriminate between cats and dogs.

As a result, we predict that face cells found in the inferior prefrontal cortex by [Scalaidhe

et al., 1999] may correspond to face classification cells possibly involved in different tasks

(e.g., face categorization, face identification, expression recognition, gender recognition,

etc ).
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D Discussion

D.1 On Learning Good Features

Building better image representations has been a major effort among computer vision sci-

entists over the past decade [Leung et al., 1995; Mohan et al., 2001; Ullman et al., 2002;

Heisele et al., 2002; Lowe, 2004] and the emerging picture is that better recognition systems

will require better features rather than better (more complex) classification algorithms.

This principle is illustrated in Fig. D.1. Imagine you are trying to build a classifier to

read out object categories from the output of two units (corresponding to neurons in IT for

example and denoted unit 1 and unit 2). The responses of these two units to various exam-

ples of the target object (e.g., under different views, illuminations, etc ) are characterized by

(+) and to distractors (e.g., examples from other object categories as well as background

images) by (−). In both panels 2-8(a) and 2-8(b), it is possible to find a separation (the

red line indicates one such possible separation) between the two sets of data-points. Yet,

statistical learning theories [Vapnik, 1995] teaches us that the representations provided by

the units in the two panels are not equal: The representation provided by the two units in

panel 2-8(b) is far superior to the one provided by the units in panel 2-8(a). The reason is

that the classifier in panel 2-8(b) is much simpler than the classifier in panel 2-8(a) (a rough

estimate of the complexity of a classifier is given by the number of wiggles of the separation

line). Learning the separation in panel 2-8(b) tends to be faster and require much less train-

ing examples. Additionally because the data-points in panel 2-8(b) lie further away from

the separation, it is guaranteed to generalize better to new previously unseen examples

than in panel 2-8(a).

At the neural level, the difference between the two panels could result from the tun-

ing of the two units. In panel 2-8(b), both units tend to be more selective for the target

object than the set of distractors. Fig. 2-9 illustrates this point from empirical simulations

with two versions of the model evaluated on a difficult face detection task: one model im-

plementation corresponds to the original model with “hardwired features” [Riesenhuber

and Poggio, 1999a] (simple 2× 2 combinations of orientations), the other corresponds to a

model implementation that uses “learned” features that correspond to prototypical parts

of the target object class (learned with k-means from the positive training set of images, see

[Serre et al., 2002] for details). This “learned” feature version of the model correspond to
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(a) Bad representation (b) Good representation

Figure 2-8: Comparing the quality of the representation provided by two units, e.g., the normalized
response of these two units to the presentation of examples of target objects (+) and distractors (−).
From the statistical learning theory perspective [Vapnik, 1995], the representation provided by the
units in b) is far superior to the one in a). At the unit level, the difference between a) and b) is
that units in b) are more selective to the target object than in a). Such increased selectivity may
result from learning a better feature representation and may provide faster learning and better
generalization to new examples.
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Figure 2-9: Face detection in natural im-
ages: Comparison between “learned fea-
tures” [Serre et al., 2002] and “standard
HMAX features” [Riesenhuber and Poggio,
1999a]. The gain in performance after in-
troducing learning in the model is signifi-
cant. Also note that the “learned feature”
version corresponds to an earlier implemen-
tation of the model [Serre et al., 2002] which
under-performs significantly the model im-
plementation described in this thesis.

an earlier implementation of the current model described here. The gain in performance

with the addition of the learning stage is drastic. While the “hardwired” features were

able to support the invariant recognition of simple object such as paperclips or even syn-

thetic face examples in the absence of clutter (see [Serre et al., 2002], they failed to handle

a face categorization task in natural images [Serre et al., 2002] (i.e., with clutter and large

variations in shape and illumination).
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D.2 One Basic Dictionary of Features for Different Recognition Tasks

As we later confirm in Chapter 4, the same circuits and mechanisms that we have described

in this Chapter, can support the robust and invariant recognition of many different object

categories (including faces as well as other objects). Additionally very recent results by

Meiers & Wolf (unpublished) also suggest that the model can perform face identification

(i.e., at the subordinate level) very well. Altogether this suggests that view-tuned cells in

AIT could support the recognition of a wide range of object categories at different levels

of categorization. This may suggest, as discussed by [Riesenhuber and Poggio, 2000] and

contrary to other proposals [Kanwisher, 2003], that there is no need for special processing

or computational mechanisms to support the recognition of different classes of objects or

different levels of categorization. 13

Expert Features: Interestingly the same basic generic dictionary of shape components

learned from a set of natural images, unrelated to any categorization tasks, is able to han-

dle the robust and invariant recognition of multiple object categories. This is in agreement

with the observation that following familiarization to a new object category, rapid changes

may occur in higher brain areas (presumably at the level of the task-specific circuits, see

Chapter 1). Yet, there is some evidence suggesting learning-related changes in lower areas

(see Chapter 1 for a review) suggesting that the dictionary of shape-components may not

be static and could undergo changes.

Indeed, with simulations, we have found that the performance of the model could

be further increased with a more specific dictionary of shape-components. For instance,

Fig. 2-10 shows the performance of a linear classifier that uses two different dictionaries

of features: a generic (called “universal”, X-axis) dictionary of features learned from a set

of natural images unrelated to any categorization task (see Section B) and an object-specific

(denoted “specific”, Y -axis) dictionary of features learned from a set of images that belong

to the target set. Each data-point in the figure represents the performance of the generic

vs. the expert set of features for each one of the 101 different object categories available for

testing (see Chapter 4) and for a specific number of examples available for training.

Interestingly with very few training examples (i.e., , less than 6 examples, blue, green

and red dots), the performance of the generic feature set is higher (probably due to over-

fitting of the object-specific set that learns both the features and the discrimination function
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Figure 2-10: Expert vs. generic fea-
tures on the CalTech-101 object data-
base (see Chapter 4). For each of
the 101 object category available for
testing and for different number of
examples available for training, we
compare the performance of a linear
classifier that uses a generic (“univer-
sal”, X-axis) vs. an expert (“specific”,
Y -axis) set of features. With very few
training examples, the performance
of the generic feature set is higher.
Yet, as the number of examples avail-
able for training increases the perfor-
mance of the expert set slowly takes
over. Reproduced from [Serre et al.,
2006b].

from the same training set of images). Yet, as the number of examples available for training

increases (baby-blue and violet), the expert set starts to slowly outperform the generic set.

The figure is reproduced from [Serre et al., 2006b] (see [Serre et al., 2006b] for details on

the experimental procedure). The generic set of features may correspond to learning dur-

ing development (see Section B) while the expert set may correspond to an expert learning

stage that occurs later during adulthood. For instance, it has been reported that neurons in

AIT becomes tuned to parts of the target objects after extensive training [Logothetis et al.,

1995; Sigala and Logothetis, 2002; Baker et al., 2002]. The building of a more specific dic-

tionary of shape-components may be related to the acquisition of expertise described in

psychology [Schyns et al., 1998; Williams et al., 1998].

We have experimented with a simple biologically plausible algorithm for learning such

expert set of features [Serre and Poggio, 2004]. The algorithm uses the temporal association

between successive image frames that contain examples of the target object undergoing

a transformation. After the presentations of several frames, the learning rule produces a

stable representation that is invariant to the transformations undergone by the target ob-

ject (e.g., clutter, illumination, intra-class variations, etc ). The proposed algorithm extends

previous work [Földiák, 1991; Perrett et al., 1984; Hietanen et al., 1992; Wallis et al., 1993;

Wachsmuth et al., 1994; Wallis and Rolls, 1997; Elliffe et al., 2002; Einhäuser et al., 2002;

Wiskott and Sejnowski, 2002; Spratling, 2005] that have used the same principle of tempo-

ral continuity to learn invariances to position, pose or illumination. We have successfully
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used the learning rule to learn critical features for the recognition of biological motion

[Sigala et al., 2005] in a model of the dorsal pathway [Giese and Poggio, 2003]. We have

also applied it to learn a set of features to be used by top-down attentional circuits [Walther

et al., 2005].

Such learning rule finds partial support from psychophysics [Wallis and Bülthoff, 2001]

and seems consistent – as pointed out by Stryker [Stryker, 1991; Földiák, 1998; Giese and

Poggio, 2003] – with a study by Myashita, who showed, that training a monkey with a

fixed sequence of image patterns lead to a correlated activity between those same patterns

during the delayed activity [Miyashita, 1988].

D.3 What is the Other 99% of Visual Cortex Doing?

As described in Table 2.114, the model contains on the order of 10 million units (these

bounds are computed using reasonable estimates for the S4 receptive field sizes and the

number of different types of simple units in all S layers). This number may need to be

increased by no more than one or two orders of magnitude to obtain an estimate in terms

of biological neurons – based on the circuits described in [Serre et al., 2005a]. This estimate

results in about 108−109 actual neurons, which corresponds to about 0.01% to 1% of visual

cortex (based on 1011 neurons in cortex [Kandel et al., 2000]). This number is far smaller

than the proportion of cortex taken by visual areas (∼ 50− 60%).

We shall emphasize that, even though this number was computed for a version of the

model trained to perform a single (binary) animal vs. non-animal classification task – be-

cause the same basic dictionary of shape-tuned units (i.e., from S1 up to S4) is being used

for different recognition tasks – this number would not differ significantly for a more realis-

tic number of categories. In particular, training the model to recognize a plausible number

of discriminable objects (i.e., probably no more than 30, 000 [Biederman, 1987]), would add

only an extra 107 S4 units.

Obviously our model does not constitute a complete model of visual cortex. In partic-

ular the calculation from Table 2.1 only takes into accounts units from the ventral stream.

Also several processing channels such as color, motion and stereo would have to be in-

corporated. So far the biophysical simulations to implement the key operations have been

performed with very few inputs [Serre et al., 2005a] and it is possible that the key computa-

tions may have to be broken down into several sub-computations to handle larger number
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Layers Number of units

S1 1.6× 106

C1 2.0× 104

S2 1.0× 107

C2 2.8× 105

S3 7.4× 104

C3 1.0× 104

S4 1.5× 102

S2b 1.0× 107

C2b 2.0× 103

Total 2.3× 107

Table 2.1: Number of units
in the model. The num-
ber of units in each layer
was calculated based on the
animal vs. non-animal cat-
egorization task presented
in Chapter 5, i.e., S4 (IT)
receptive fields (RF) span-
ning only 4.4o of visual an-
gle (160 × 160 pixels, prob-
ably not quite matching the
number of photoreceptors in
the macaque monkey in that
foveal area of the retina) and
about 2, 000 types of units in
each S2, S2b and S3 layers.

of afferents. Yet taken all of these limitations into account and assuming that we need to

increase our estimate of the number of neurons by one order of magnitude, it remains that

the model can categorize visual object with no more than 10% of visual cortex.

Note that with large scale neural architectures such as blue brain, it is expected that we

will soon be able to simulate ≈ 108 single-compartment neurons15 and therefore simulate

the model with more detailed units. In particular, to make the simulations computationally

tractable, the model presented here only uses a static approximation of the two key com-

putations, i.e., TUNING and MAX operation. As discussed in Chapter 1, a better description

of the two key computations will involve biophysical micro-circuits (see Fig. 1-8).

Notes

1By convention, 1o of visual angle in the model corresponds to 36 × 36 pixels in the

input image (see Appendix A).

2Our model of simple cells as Gabor filters, applied directly on the raw pixel image, is

an obvious oversimplification. Yet, as we show in Chapter 3, the corresponding S1 units

constitute a good phenomenological model of simple cells and account well for the the tun-

ing properties of cortical simple cells. A more realistic implementation would correspond

to the combination of center-surround (ON and OFF) ganglion cell receptive fields with
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the TUNING operation described in Eq. 1.3. Feedforward push-pull mechanisms [Ferster

and Miller, 2000; Miller, 2003; Hirsch, 2003] which combine a balance of feedforward ON

excitation with feedforward OFF inhibition (or vice-versa) could be implemented by the

numerator of Eq. 1.3. In principle, the denominator of Eq. 1.3 could provide contrast adap-

tation through feedforward shunting inhibition (from inhibitory interneurons in layer IV)

or even sharpening of the orientation through recurrent shunting inhibition [Sompolinsky

and Shapley, 1997] (from cortical cells at other preferred orientations – which have zero

weights in the numerator and therefore do not participate in shaping the classical recep-

tive field of the S1 unit).

3When parameterizing S1 units we tried to account for an observation about cortical V1

cells which is that larger cells tend to be tuned to lower spatial frequencies and vice-versa,

see Chapter 3 and Appendix A.

4As we discussed in Chapter 1, units in the model are more likely to correspond to com-

putational modules in cortex, i.e., ensemble of n equivalent cells with the same inputs rather

than single neurons. Each mini-column in the model is thus composed of several modules

at different scales. We suggested earlier that the number n of cells in each computational

module may decrease along the hierarchy. Additionally we suggest that both the number

of scales in each mini-column as well as the number of macro-columns may also decrease

(with cells becoming more and more invariant to scale and position). Alternatively we

propose that the number of mini-columns within each macro-columns may increase (from

only 8 types of units at the S1 level (4 orientations and 2 phases) to about 1, 000 types of

units in higher stages).

5The sampling is reduced from S1 to C1 layers. From 17 different scales at the S1 level,

the scale space is reduced to only 8 scales at the C1 level (with broader frequency tuning).

Similarly a large downsampling is performed over positions (see Appendix A). Yet, in all

layers, there is a high degree of overlap between units.

6Both V4 and TEO could also be bypassed through structures that have not been yet in-

corporated in the model, e.g., subcortical areas [Baleydier and Morel, 1992; Webster et al.,

1994b], the superior temporal sulcus denoted STS in Fig. 1-1 [Saleem et al., 1996], the
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perirhinal (35 and 36) and parahippocampal areas denoted TF and TH in Fig. 1-1 [Web-

ster et al., 1991; Horel, 1992], and through the parietal and frontal cortex [Webster et al.,

1994a] from V2 [Boussaoud et al., 1990].

7Several researchers have emphasized the computational constraints on invariant feature-

based representations of the kind used in the model and the difficult trade-off between se-

lectivity and invariance in achieving invariant recognition [von der Malsburg, 1981, 1995,

1999; Riesenhuber and Poggio, 1999b,a; Ullman and Soloviev, 1999; Ullman et al., 2002; Mel

and Fiser, 2000; Stringer and Rolls, 2000; Amit and Mascaro, 2003]. Loosely speaking, the

simpler the feature-detector, the more likely it is to produce false-alarms. As a result, sim-

ple feature-detectors are only useful with a limited range of invariance. To build more in-

variant representations it is important to rely on more complex feature detectors. Accord-

ingly it has been suggested that the gradual parallel increase in the invariance properties

and the preferred stimulus of cells along the ventral stream is a result of this invariance-

selectivity trade-off [Riesenhuber and Poggio, 1999b,a; Mel and Fiser, 2000]. In particular,

[Mel and Fiser, 2000] used an analytical model (in the domain of text) to study this design

trade-off and the susceptibility of such system to false-positive recognition errors.

8A classic misconception is that invariant feature-based representations are insensitive

to image scrambling. This would only be true for a representation that relies on very few,

non-overlapping parts. But as feature-detectors become more numerous and start to over-

lap, i.e., the representation becomes more redundant, then scrambling the image disrupts

at least part of the features (the precise number of features disrupted likely depends on the

relative size of the features and the scrambling procedure), see [Riesenhuber and Poggio,

1999a] for quantitative results.

9We recently proposed a biologically plausible learning rule for selecting the most in-

formative features about an object class, i.e., features that repeat across different images of

the same objects. We have simulated a simplified version of Földiak’s trace rule to gener-

ate units that become tuned to complex features of images [Serre and Poggio, 2004]. After

presentation of many natural images, the units become tuned to complex features – for

instance of face-components – if a sequence of face images (in the presence of background)

is presented (in general, objects are not at the same position and scale). Learning is task-



78 CHAPTER 2. THEORY AND BASIC MODEL IMPLEMENTATION

independent and simply relies on temporal continuity (e.g., the same object being present

during a temporal sequence of images).

10A more realistic implementation would require a continuous learning of all the layers

with fast time constants in the top layers and increasingly slower time constants from top

to bottom.

11A more biologically plausible version of this rule would involve mechanisms such as

LTP [Markram et al., 1997; Bi and Poo, 1998; Abarbanel et al., 2002; van Rossum et al.,

2000].

12There are several ways to solve Eq. 2.2. In this thesis, we computed a simple linear

least-square fit solution using Matlab c© (The MathWorks, Inc) left division operation for

matrices. We also obtained very similar results with a stochastic gradient using weight

perturbations (only it takes longer to train). Such approach is simpler to implement in

neural hardware, as it does not attempt to solve the global optimization problem. In-

stead, at each iteration, a small step is taken in a random direction in the parameter space

(i.e., a small noise vector ξ is added to the weight vector c to yield the new weight vector

c∗ = c + ξ) yielding the new classification function f∗. The error ||f∗(xk) − yk||2 on the

current training image xk is compared to the error performed by the classification unit

before the random step was taken ||f(xk) − yk||2. If the error decreases with the update,

the update is maintained, else a step in the opposite direction is taken. Interestingly, this

simple algorithm is guaranteed to minimize the gradient ∇E on average. Such approach

is analog to a Darwinian evolution for learning in brains and provides a computational

role for the randomness of synaptic transmission in cortex [Seung, 2003].

13It would be interesting to perform an fMRI experiment on the model. Based on the

observation that cells which become selective to a new object tend to form clusters of cells

[Erickson and Desimone, 1999] with similar selectivities (see also Chapter 2 and Tanaka’s

feature columns in TEO), it is likely that S4-like cells in AIT, tuned to different examples of

the same object, would be neighboring in space. As a result, one may speculate that such

clusters of units in the model could potentially appear to form “areas”, e.g., a Face Area

[Kanwisher et al., 1997] when the model is trained with faces or a Body Area [Downing
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et al., 2001] when trained with body parts, etc .

14The numbers in Table 2.1 are only “suggestive”. In particular, no effort has been made

in using realistic numbers in the relative proportion of units in different stages.

15http://bluebrainproject.epfl.ch

16It is interesting to point out that the approach developed in the model bares some con-

nections with other non-biological computer vision systems. For instance, the dictionary

of shape-components represented from the S2 to the S4 layers and the resulting hierarchy

of unit selectivities is somewhat similar to features such as components [Mohan et al., 2001;

Heisele et al., 2001a, 2002], parts, [Burl et al., 1998; Weber et al., 2000a; Fergus et al., 2003;

Fei-Fei et al., 2004], fragments [Ullman and Soloviev, 1999; Ullman et al., 2002], codewords

[Jurie and Triggs, 2005], keypoints [Lowe, 2004] and bags of features [Csurka et al., 2004] in

computer vision. Yet, contrary to these computer vision systems that learns new features

for each new object class to be learned, the dictionary of features used by the model is

generic, i.e., it can support several different recognition tasks and in particular recognition

of many different object categories.

17Our model implementation may also provide a quantitative framework to the very

vague notion of pre-attentive vision and “unbound” features in cognitive science [Treis-

man and Gelade, 1980; Wolfe and Bennett, 1997; Evans and Treisman, 2005].
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Chapter 3

Comparison with Neurons

We have described earlier in Chapter 2 the general architecture, the organization as well

as the main functional primitives of the model. Here we show that layers of the model can

be mapped to cortical areas. In particular, we describe a quantitative comparison between

the model and data from V1, V4 and IT (TE). While some of the model parameters were

manually adjusted so that the lower stages in the model (i.e., S1, C1) as well as the top

layer (i.e., S4) match the tuning properties of cells in V1 and TE respectively (see Section

A and C), no parameters were fit in intermediate layers of the model. It is therefore quiet

remarkable that the model units in the C2 stage, as shown in Section B, agrees with V4

data.

A V1 and the Model

The parameters of the S1 and C1 units were manually adjusted so that their receptive

field sizes, frequency tuning and orientation bandwidth span the range of V1 parafoveal

simple and complex cells when probed with standard stimuli (i.e., single bars, edges and

gratings). Because the tuning properties of cortical cells vary widely along a continuum

(see [Hubel and Wiesel, 1968; Schiller et al., 1976b,c,e,a; DeValois et al., 1982b,a]), it would

be very difficult to quantitatively account for the whole population of cells. Instead we

tried to generate a population of units that accounts for the bulk of cells in primate striate

cortex. As illustrated in Table 3.1, the population of S1 and C1 units is able to capture the

tuning properties of typical simple and complex cells.
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A.1 Methods

Orientation Tuning

The orientation tuning of model units was assessed in two ways: First, following [DeValois

et al., 1982b], we swept a sine wave grating of optimal frequency over the receptive field

of each unit at thirty-six different orientations (spanning 180o of the visual field in steps

of 5o). For each unit and orientation tested, we recorded the maximum response (across

positions) to estimate the tuning curve of the unit and compute its orientation bandwidth

at half-amplitude. For comparison with [Schiller et al., 1976c], we also swept edges and

bars of optimal dimensions (i.e., preferred height and width): For each unit, the orientation

bandwidth at 71% of the maximal response was calculated as in [Schiller et al., 1976c].1

Spatial Frequency Tuning

The spatial frequency selectivity of each model unit was assessed by sweeping sine wave

gratings at various spatial frequencies over the receptive field of the unit. For each grat-

ing frequency, the maximal unit response was used to fit a tuning curve and the spatial

frequency selectivity bandwidth was calculated as in [DeValois et al., 1982a] by dividing the

frequency score at the high crossover of the curve at half-amplitude by the low crossover

at the same level. Taking the log2 of this ratio gives the bandwidth value (in octaves):

bandwidth = log2
high cut

low cut
(3.1)

For comparison with [Schiller et al., 1976d], we also calculated the selectivity index as de-

fined in [Schiller et al., 1976d], by dividing the frequency score at the high crossover of

the curve at 71% of the maximal amplitude by the low crossover at the same level and

multiplying this value by 100 (a value of 50 representing a specificity of 1 octave):

selectivity index =
high cut

low cut
× 100 (3.2)



A. V1 AND THE MODEL 83

Receptive field sizes
Model Cortex References

simple cells 0.2o − 1.1o ≈ 0.1o − 1.0o [Schiller et al., 1976e;
Hubel and Wiesel, 1965]

complex cells 0.4o − 1.6o ≈ 0.2o − 2.0o

Peak frequencies (cycles /deg)
Model Cortex References

simple cells range: 1.6− 9.8 bulk ≈ 1.0− 4.0 [DeValois et al., 1982a])
mean/med: 3.7/2.8 mean: ≈ 2.2

range: ≈ 0.5− 8.0
complex cells range: 1.8− 7.8 bulk ≈ 2.0− 5.6

mean/med: 3.9/3.2 mean: 3.2
range ≈ 0.5− 8.0

Frequency bandwidth at 50% amplitude (cycles / deg)
Model Cortex References

simple cells range: 1.1− 1.8 bulk ≈ 1.0− 1.5 [DeValois et al., 1982a]
med: ≈ 1.45 med: ≈ 1.45

range ≈ 0.4− 2.6
complex cells range: 1.5− 2.0 bulk ≈ 1.0− 2.0

med: 1.6 med: 1.6
range ≈ 0.4− 2.6

Frequency bandwidth at 71% amplitude (index)
Model Cortex References

simple cells range: 44− 58 bulk ≈ 40− 70 [Schiller et al., 1976d]
med: 55

complex cells range 40− 50 bulk ≈ 40− 60
med. 48

Orientation bandwidth at 50% amplitude (octaves)
Model Cortex References

simple cells range: 38o − 49o — [DeValois et al., 1982b]
med: 44o

complex cells range: 27o − 33o bulk ≈ 20o − 90o

med: 43o med: 44o

Orientation bandwidth at 71% amplitude (octaves)
Model Cortex References

simple cells range: 27o − 33o bulk ≈ 20o − 70o [Schiller et al., 1976c]
med: 30o

complex cells range: 27o − 33o bulk ≈ 20o − 90o

med: 31o

Table 3.1: Summary of the tuning properties of the S1 and C1 units vs. parafoveal simple and
complex cells from monkey primary visual cortex. Model units were probed with the same stimuli
as the corresponding studies in cortex (e.g., gratings to assess the orientation bandwidth at 50%
amplitude as in [DeValois et al., 1982b] and edges as well as bars of optimal dimensions size to
assess the orientation tuning at 71% amplitude as in [Schiller et al., 1976c]. ’—’ indicates a value we
discarded because it appears anomalous and inconsistent with the rest of the literature: as reported
in [DeValois et al., 1982b], the median orientation tuning bandwidth of parafoveal complex cells
(34o) would be less than that of both foveal simple (42o) and complex (45o) cells.
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Figure 3-1: Spatial fre-
quency bandwidth of the
C1 vs. S1 units. In the
model, we observer an in-
crease of about 20% in the
spatial frequency band-
width of units from the S1

to the C1 stage, consistent
with parafoveal cortical
cells [Schiller et al., 1976d;
DeValois et al., 1982a].
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A.2 Results

A summary of all the tuning properties of the model units and corresponding primate

cortical cells is provided in Table 3.1. Details on how the parameters for the model units

were selected as well as all parameter values can be found in Appendix A. Model units

seem to capture well the tuning properties of the bulk of parafoveal cells. In addition,

consistent with physiology [DeValois et al., 1982a; Schiller et al., 1976d], the population of

model units exhibits the following trends:

1. A positive correlation between the size of the receptive fields and the frequency

bandwidths;

2. A negative correlation between the size of the receptive fields and the peak frequen-

cies

3. A broadening in the frequency bandwidth from S1 to C1 units (≈ 20%, see Fig. 3-1

for illustration).

In Appendix A we describe how S1 and C1 parameters were adjusted so that the corre-

sponding units would match the tuning properties of cortical parafoveal cells. The reader

can refer to [Serre and Riesenhuber, 2004] for a comparison between the new model para-

meters and the parameters of the original model [Riesenhuber and Poggio, 1999a].
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B V4 and the Model

Here we compare the tuning properties of model C2 units to the tuning properties of cells

in V4. As described in Chapter 2, the tuning of the S2 and C2 units is learned from natural

images during an unsupervised learning stage. During this developmental-like learning

stage, model units become tuned to image features (patches of natural images) that ap-

pear with high probability in natural images. Here we take a closer look at the detailed

tuning properties of the resulting units and analyze their selectivity to standard stimuli.

We show that C2 units that are learned from natural images exhibit tuning properties that

agree with experimental data from V4. First we analyze the response of model C2 units to

boundary conformations [Pasupathy and Connor, 2001] (see Section B.1); second we look

at the interaction of two-bar stimuli when presented within the receptive fields of S2 units

[Reynolds et al., 1999] (in the absence of attention, see Section B.2).

B.1 Tuning to Boundary-Conformation Stimuli

To try to get a more quantitative description of V4 cells, Pasupathy & Connor consid-

ered a parametrized space of moderately complex 2D shapes (see Fig. 3-2) to probe V4

neurons. The stimulus dataset was generated by systematically combining convex and

concave boundary elements to produce simple closed shapes with shared boundary com-

ponents. With this parameterized stimulus dataset they quantified the responses of pre-

screened V4 cells (responsive to complex stimuli) and look at which ones, from a set of

different tuning spaces, best explained the data. They compared three different tuning

domains:

1. Tuning for boundary conformation, i.e., characterizing the neural response in a cur-

vature× angular position tuning space, where curvature is defined as the rate of change

in tangent angle with respect to contour length (see [Pasupathy and Connor, 2001]

for details) and angular position is measured with respect to the object center of mass;

2. Tuning for linear edge orientation;

3. Tuning for axial orientation (where axial denotes the axis of greatest elongation).

Pasupathy & Connor found that the boundary conformation space best characterized

the set of 109 V4 responses they recorded from. From these results, they suggested a part-
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Figure 3-2: The stimulus dataset used to measure the tuning of cells to boundary conformations
(see [Pasupathy and Connor, 2001] for details).

based representation of complex shapes in V4, where the parts are boundary patterns de-

fined by curvature and position relative to the rest of the object.

To look at the plausibility of the architecture of Fig. 2-1 and the associated learning rule

we performed a similar “recording” experiment on model units. Using the same stimulus

set as in [Pasupathy and Connor, 2001] (see Fig. 3-2) we recorded from 109 model units in

the C2 layer that were pre-screened for their selectivity to complex shapes. As in [Pasu-

pathy and Connor, 2001] different Gaussian tuning functions (i.e., axial orientation, edge

orientation and boundary conformation) were fit to the response of the recorded units.



B. V4 AND THE MODEL 87

Results

Fig. 3-3 shows a comparison between one V4 neuron (from Fig. 4A in [Pasupathy and

Connor, 2001]) and one of the C2 unit we recorded from. Both seem to be tuned to concave

curvature at the right and exhibit qualitatively similar patterns of responses to the different

shapes. The model unit was picked from the population of 109 model C2 units under study.

Both units exhibit very similar pattern of responses (overall correlation r = 0.78). The fit

between the model unit and the V4 neuron is quiet remarkable given that there was no

fitting procedure involved here for learning the weights of the model unit: The unit was

simply selected from the small population of 109 model units that we recorded from; its

tuning (or preferred stimulus) was learned from natural images. The organization of the

receptive field of the C2 units was dictated by the theory described in Chapter 2: The shape

selectivity of the C2 units is inherited from its afferent S2 units that are all tuned to the same

preferred stimulus but centered at slightly different positions and scales (thus providing

tolerance to shift and size). Each S2 afferent itself receives its inputs from oriented V1-like

complex cells (see inset of Fig. 3-3(b) for an illustration of the organization of one S2 unit).

Fig. 3-4 displays the results of the simulated experimental methodology from [Pasu-

pathy and Connor, 2001] performed on the overall population of 109 model units. Each

model unit has learned the pattern of input from a natural image patch. Goodness-of-fit

was assessed by calculating the coefficient of correlation between neural responses and

responses predicted by the tuning functions (see Fig. 3-4). The resulting population of

model units exhibits tuning that is best explained by the tuning in the boundary confor-

mation space than in the edge orientation space or axial orientation space, a characteristic

of V4 neural population as reported by [Pasupathy and Connor, 2001]. The median val-

ues of the correlation coefficients of the model units and V4 neurons for different tuning

functions are summarized in Table 3.2. The V4 data is courtesy of Pasupathy & Connor. 2

Methods

Below we describe the methodology used to assess the selectivity of units for boundary

conformations ([see Pasupathy and Connor, 2001] for details).

Stimulus Set: The stimulus set used in [Pasupathy and Connor, 2001] contains 366 stim-

uli created by systematically combining convex and concave boundary elements. The stim-

ulus dataset (see Fig. 3-2) was reproduced using code kindly supplied by Anitha Pasupa-
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Tuning functions Model units V4 neurons

2-D boundary conformation 0.38 0.41
4-D boundary conformation 0.47 0.46
2-Gaussian boundary conformation 0.50 0.46
Edge orientation 0.11 0.15
Edge orientation + contrast polarity 0.18 0.21
2-D axial orientation × elongation tuning functions 0.28 0.18
3-D axial orientation × length × width tuning functions 0.32 0.28

Table 3.2: Goodness of fit (median value of the correlation coefficients across all cells) of different
tuning functions for model units and V4 neurons.

thy. Each stimulus is represented by a white icon drawn within a black circle representing

the unit receptive field. Details on the construction of the stimulus set and data analysis

can be find in [Pasupathy and Connor, 2001].

Tuning Spaces Each boundary element was characterized by four numbers (curvature,

orientation, angular position, and radial position) and could be considered a point in a

multidimensional space such that each shape is a collection of such points. The tuning

of model units was characterized using the same shape space analysis as used by Pasu-

pathy & Connor. Multi-dimensional Gaussian functions were fit for each model unit in a

shape space based on the stimuli. The multi-dimensional functions used to characterize

model responses are: (a) 2-D boundary conformation, (b) 4-D boundary conformation, (c)

2-Gaussian boundary conformation, (d) edge orientation, (e) edge orientation + contrast

polarity, (f) 2-D axial orientation × elongation tuning functions and (g) 3-D axial orienta-

tion × length ×width tuning functions.

The 2-D boundary conformation domain represents the contour elements of each stim-

uli in a curvature × angular position space. The 4-D boundary conformation domain con-

tains, in addition to the same curvature × angular position space as the 2-D boundary

conformation space, two adjacent curvature dimensions (i.e., the central curvature is aug-

mented by the curvatures of the contour segments that are counterclockwise and clock-

wise adjacent). An edge orientation shape space analysis was also used to determine if

responses were selective to flat contour segments at specific orientations. For this space

each contour segment of a stimulus was parameterized by the angle between the tangent

line and the horizontal. As in [Pasupathy and Connor, 2001], for each model unit, we

characterized its tuning in shape space by deriving multi-dimensional Gaussian functions

based on neural responses (see [Pasupathy and Connor, 2001] for details).
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(a) One V4 Neuron

0

0.14

0.28

0.42

0.56

0.7

(b) One model C2 unit

Figure 3-3: A comparison between the response of a single V4 neuron (corresponding to Fig. 4A in
[Pasupathy and Connor, 2001]) (a) and a single model C2 unit (b) over the boundary conformation
stimulus set. The response magnitude to each stimulus is indicated by the gray level of the stim-
ulus background. The darker the shading the stronger the response. The model unit was picked
from the population of 109 model C2 units under study. Both units exhibit very similar pattern of
responses (overall correlation r = 0.78). The fit between the model unit and the V4 neuron is quiet
remarkable given that there was no fitting procedure involved here for learning the weights of the
model unit: The unit was simply selected from a small population of 109 model units learned from
natural images and selected at random. The inset on the lower right end of the figure at the bot-
tom describes the corresponding receptive field organization of the C2 unit. Each oriented ellipse
characterizes one subfield at matching orientation. Color encodes for the strength of the connection
between the subfield and the unit.
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(b) Population of model C2 units

Figure 3-4: Model C2 units (b) exhibit tuning properties comparable with V4 data (a) from [Pa-
supathy and Connor, 2001]. In each figure, each one of the seven panels displays the population
histogram of the correlation coefficient (goodness of fit) for a different tuning function (see text):
i.e., boundary conformation (top row) with 2-D boundary conformation (a), 4-D boundary confor-
mation (b) and 2-Gaussian boundary conformation (c), edge orientation (middle row) with edge
orientation (d) and edge orientation and contrast polarity (e) as well as axial orientation (bottom
row) with 2-D axial orientation× elongation tuning functions (f) and 3-D axial orientation× length
×width tuning functions (g). V4 neurons characteristically show higher correlation coefficients for
boundary conformation tuning functions (a, b, c) than for edge orientation or axial orientation tun-
ing functions (d, e, f, g) and so do the model units.
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B.2 Tuning to Two Bar-Stimuli

We here look at the response of model C2 units to single and two-bar stimuli presenta-

tions as [Reynolds et al., 1999]. [Reynolds et al., 1999] recorded the response of individual

V4 neurons in two experimental conditions, i.e., when the monkey was attending either

outside or inside the receptive field of neurons. The feedforward model described in this

thesis does not yet account for attentional mechanisms. Therefore in the following we only

look at the condition for which the monkey was attending away from the receptive field

such that attention did not affect the response of the recorded neuron. In this condition,

Reynolds et al. found that the addition of a second stimulus presented within the receptive

field of a V4 neuron (see Fig. 3-5) causes the response of the neuron to move toward the

response of the second stimulus alone.

B.3 Results

We performed a similar experiment while “recording” from a population of model C2

units. As in [Reynolds et al., 1999], we presented model units with both a reference stim-

ulus and a probe stimulus (each an oriented bar) either at the same time or individually.

The responses were then analyzed using a similar methodology as in the experiment (see

Section B.3).

The results of this experiment are shown in Fig. 3-6. The experimental findings are

reproduced on the left, and the model results are on the right. Interestingly, such inter-

ference effects (i.e., presenting a preferred and a non-preferred stimulus together produces

a neural response that falls between the neural responses to the two stimuli individually,

sometimes close to an average, in the absence of attention) may be occurring in other cor-

tical areas such as IT, see [Serre et al., 2005a]. The model accounts for such “clutter effect”

regardless of any particular cortical area, using the same principle operations for selectiv-

ity and invariance appearing across different layers. In fact, the biased competition model

devised to explain the results of [Reynolds et al., 1999] is closely related to Eq. 1.3 in our

model. Since normal vision operates with many objects appearing within the same recep-

tive fields and embedded in complex textures (unlike the artificial experimental setups),

understanding the behavior of neurons under such clutter condition is important and war-

rants more experiments.
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Figure 3-5: The two-bar stimulus experiment by Reynolds et al. (modified from [Reynolds et al.,
1999]). The monkey here is attending away from the receptive field of the neuron being recorded.
Reynolds et al. found that the addition of a second stimulus presented within the receptive field of
a V4 neuron causes the response of the neuron to move toward the response of the second stimulus
alone.

Methods

As in [Reynolds et al., 1999] we used 16 stimuli. However, because the model does not yet

include color sensitive cells, instead of using 16 stimuli composed of all combinations of

four oriented bars (0o, 45o, 90o, and 135o) presented in four colors (red, blue, green, and

yellow), we presented 16 gray-scale oriented bars. Thus an equal number of measurements

was performed on model units and V4 neurons.

As in [Reynolds et al., 1999], stimuli could appear at one of two possible locations

within the receptive field of units: By definition, the stimulus that appears at position one

(see Fig. 3-5) is designated as the reference stimulus (chosen from the set of 16 possible

stimuli). As in [Reynolds et al., 1999], the reference stimulus was chosen sometimes to be

the preferred stimulus for the unit, sometimes the weakest and sometimes an intermediate

stimulus. The stimulus that appears at position two, designated the probe stimulus, was

selected at random from the same set of 16 possible stimuli as in [Reynolds et al., 1999].

While the identity of the probe (if presented) varied for each trial, the identity of the ref-

erence was fixed throughout the entire “recording” session. On any given trial, we tested

three conditions:
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-1 0 1
-1

0

1

Selectivity

Slope: 0.55

Model

Figure 3-6: The model exhibits a behavior to the two-bar stimuli presentations very similar to the
V4 neurons in the absence of attention. The summary of V4 neural responses, adapted from Fig. 5
in [Reynolds et al., 1999], is shown on the left. The addition of a stimulus moves the response
toward the response to that stimulus alone, i.e., the response to the clutter condition lies between
the responses to the individual stimuli.

1. the reference stimulus appearing in position one alone;

2. the probe stimulus appearing in position two alone;

3. the reference stimulus appearing in position one together with the probe stimulus at

position two.

Each unit response was normalized by dividing all responses by the maximal response

of the unit across all conditions. As in [Reynolds et al., 1999] we computed several indexes:

• A selectivity index SEi:

SEi = PROBEi −REF,

where PROBEi is the normalized response of the unit to the reference stimulus and

PROBEi the normalized response of the unit to the ith probe. This was computed for

each of the probes thus yielding 16 selectivity values for each unit. This selectivity

index can range from −1 to +1, with negative values indicating that the reference

stimulus elicited the stronger response, a value of 0 indicating identical responses to

reference and probe, and positive values indicating that the probe stimulus elicited

the stronger response.
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• A sensory interaction index SIi:

SIi = PAIRi −REF,

where PAIRi is the normalized response to the pair composed of the reference stim-

ulus and the ith probe stimulus. The selectivity index also takes on values from −1

to +1. Negative values indicate that the response to the pair was smaller than the

response to the reference stimulus (i.e., adding the probe stimulus suppressed the

neuronal response). A value of 0 indicates that adding the probe stimulus had no

effect on the neuron’s response. Positive values indicate that adding the probe in-

creased the neuron’s response.

C TE and the Model

One of the key feat of the original model [Riesenhuber and Poggio, 1999a] was its ability

to duplicate the tuning and invariance properties of the view tuned units from TE/AIT

[Logothetis et al., 1995]. To ensure that the model remains consistent with these data, we

probed model S4 units with the paperclip stimuli as in the physiology experiment. As in

[Riesenhuber and Poggio, 1999a], we used 80 out of the set of 200 paperclip stimuli (20

targets, 60 distractors) used in [Logothetis et al., 1995].

C.1 Methods

To assess the degree of invariance to stimulus transformations, we used a paradigm sim-

ilar to the one used in [Logothetis et al., 1995; Riesenhuber and Poggio, 1999a], in which

a transformed (rescaled or rotated in depth) target stimulus is considered properly recog-

nized in a certain presentation condition if the S4 tuned to the original target (default size

and view), responds more strongly to its presentation than to the presentation of any dis-

tractor stimulus. This measures the hit rate at zero false positives.

To measure the invariance properties of the S4 units to translation, we trained one S4

unit for each of the 20 target paperclips presented in the center of the image. During the test

period, we probed the response of each S4 unit to its preferred stimulus in eight possible

quadrants (± a random shift within the quadrant, see Fig. 3-7(a)) as well as distractors.

To measure the functional receptive field of each S4 unit, we compared the response of
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the unit to its preferred stimulus at each location and compared it to the response to a

distractor in the center of the visual field.

To examine the invariance of the S4 units to scale, we trained one S4 unit to each of the

20 target paperclips at the original size (at the center of the visual field). During the test

period, we compared the response of each S4 units to its preferred stimulus at at different

sizes (in 1/4 octave steps, see Fig. 3-7(b)). To examine the invariance of the S4 units to pose,

we trained one S4 unit to each of the 20 target paperclips at a reference view (denoted 0o,

positioned at the center of the input image). During the test period we probed the response

of each S4 unit with its preferred stimulus at different orientations±50o from the reference

by steps of 4o, see Fig. 3-7(c) as well as distractors.

C.2 Results

We confirmed that the range of invariance of the S4 units is well within the range of the

view-tuned units in AIT from [Logothetis et al., 1995] (see also [Riesenhuber and Poggio,

1999a]). Model S4 units exhibited an average position invariance of ±2o and a scale in-

variance of ±1 octave. The invariance to 3-D pose was ±20o. Also note that in the present

version of the model (unlike the original one [Riesenhuber and Poggio, 1999a]) all the V1

parameters are derived exclusively from available V1 data and do not depend – as they did

in part in the original HMAX model – from the requirement of fitting this benchmark pa-

perclip recognition experiment. Thus the fitting of those paperclip data by the new model

is even more remarkable than in the original HMAX case. Details about this experiment can

be found in [Serre and Riesenhuber, 2004].

D Discussion

In addition to the comparisons we described in this Chapter, the model has been shown

to be qualitatively and quantitatively consistent with several other properties of cells. For

instance, the earlier model by [Riesenhuber and Poggio, 1999a] was shown to be compati-

ble with data from PFC [Freedman et al., 2003] as well as several fMRI and psychophysical

data [Riesenhuber et al., 2004]. For instance, the model predicts (see [Serre et al., 2005a]),

at the C1 and C2 levels respectively, the max-like behavior of a subclass of complex cells in

V1 [Lampl et al., 2004] and V4 [Gawne, 2000]. [Cadieu, 2005] showed that it is possible to

fit individual V4 neurons with model C2 units (with a very simple greedy fitting approach)
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(a) Shift invariance (±2
o)

(b) Scale invariance (±1 octave)

(c) Pose invariance (±20
o)

Figure 3-7: Paperclip stimuli used to test the tuning and invariance properties of the model S4 units
as in the monkey physiology experiment [Logothetis et al., 1995].
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and to accurately predict their responses across different stimulus sets. For instance, the

fitting procedure can be performed on a stimulus set A, e.g., boundary conformations, and

still predict the neural responses on another stimulus set B, e.g., 2-spot reverse correlation

maps. The model also accounts for the experimental recordings in IT during presentation

of multiple objects and read-out from C2b units in the model predicted [see Serre et al.,

2005a, section 4.3] recent read-out experiments in IT [Hung et al., 2005], showing very

similar selectivity and invariance for the same set of stimuli.

Thus far the model has been successful in making quantitative predictions from V1

through V4, IT and PFC. This strongly suggests that the theory provides an important

framework for the investigation of visual cortex.

Notes

1Interestingly, sweeping edges, optimal bars and Cartesian gratings gave very similar

tuning curves for model units (see Fig. 2-4). This constitutes an important sanity check

as different groups tend to use different stimuli to assess the tuning properties of cortical

cells.

2The correlation coefficients in Fig. 3-4 were found using the same nonlinear fitting

procedures with different tuning functions as described in Fig. 9 of [Pasupathy and Con-

nor, 2001]. There are some small numerical differences between our results and those of

Pasupathy and Connor. The discrepancies may be due to the minor differences in nor-

malization of the V4 responses (e.g., we linearly scaled the V4 data, courtesy of Pasupathy

and Connor, to lie between 0 and 1), differences in conventions for extracting parame-

ters (curvature, edge orientation, axial orientation) from the stimuli, and differences in the

nonlinear fitting routines (e.g., number of initial points).

3The model assumes that there are simple (S2) and complex (C2) computational units

which differ in their translational and scale invariance properties. The available data from

V4 suggests that most of the reported results from recording experiments are from C2-like

cells (cells with a range of translation invariance that cannot be attributed to the range of

invariance from V1 complex cells). The model predicts the existence of S2-like cells. They
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may at least in part be present in area V2 and feed directly to the C2-like cells in area V4.

We do not think there is enough evidence so far for ruling out the presence of simple and

complex cells in V4 (the difference would be mostly in the larger range of invariance to

position and scale for C2 cells than S2 cells).
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Chapter 4

Performance on Natural Images

In Chapter 3, we showed that model units agree with neural data from V1, V4 and IT. In

particular, we showed that a dictionary of shape-components, learned from natural images

during a developmental-like learning stage in which model units become tuned to patches

of natural images, seem to quantitatively account for the tuning properties of V4 cells on

standard stimuli (gratings, boundary conformations and two-bar stimuli). For a theory

of object recognition in cortex to be successful, it should also be able to perform robust

invariant recognition in the real-world. Here we report on the model performance on

several databases of photo-realistic picture images of objects in their natural environment

(e.g., in clutter). Images are unsegmented and both the learning and the recognition stages

have to cope with clutter. Here we show that not only can the model duplicate the tuning

properties of neurons in various brain areas when probed with artificial stimuli, but it can

also handle the recognition of objects in the real-world, to the extent of competing with the

best computer vision systems.

In Section A, we first evaluate the performance of the model on several categorization

tasks with a large database of objects called the CalTech-101 object database. We also pro-

vide experimental simulations that evaluate the robustness of the model to various sim-

plifications in the circuits that approximate the two key operations in the model, i.e., the

TUNING and MAX operation (see Chapter 1). In Section B, we compare the performance

of the model to several benchmark AI recognition systems. We finally discuss possible

implications for biological vision in Section C.
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Figure 4-1: Representative images from the CalTech-101 object database [Fei-Fei et al., 2004] (cougar
and elephant categories displayed). The challenge for a vision system is to cope with the drastic
changes in the object appearance (e.g., pose, shape, texture, size) as well as changes in clutter and
illumination.

A Robustness of the Model

A.1 Performance on the CalTech-101 Database

The CalTech-101 database contains images of objects organized into 101 different cat-

egories. Each category contains ≈ 40 − 800 images with most categories having ≈ 50

images. The size of each image is roughly 300 × 200 pixels but to speed-up processing

time, we rescaled all images to be about half the original size (more precisely images were

rescaled to be 140 pixels in height). Images were collected from the web by Fei-Fei and

colleagues (see [Fei-Fei et al., 2004]) using a search engine1. The database constitutes a

challenge for a vision system as it contains images from many different object categories

with large variations in shape, clutter, pose, illumination, size, etc . Some of the objects are

highly “deformable” (e.g., animals appearing in any pose). Representative images from

two animal categories (elephant and cougar) are shown in Fig. 4-1.

Importantly, although images in the database have been recently annotated to pro-

vide the outline of objects, we did not use these annotations. That is, the set of images

used to train and test the model was unsegmented (i.e., objects were embedded in clutter).

Also, while images in the database contain color information, as a pre-processing step,

we converted all images to gray-scale. The database is becoming increasingly popular,

which makes it very useful for performing standardized comparisons between different
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approaches [Fei-Fei et al., 2004; Berg et al., 2005; Serre et al., 2005b; Holub et al., 2005a,b;

Grauman and Darrell, 2005]. Altogether the database constitutes an interesting challenge

for a neurobiological model of object recognition.

Methods: The core part of the model, i.e., the dictionary of shape-components corre-

sponding to units from V4 to TEO used in this experiment was obtained with the pro-

cedure described in Chapter 2 (Section B). This developmental-like learning stage sets the

preferred stimulus of the S units (i.e., their synaptic weight vector w, see Eq. 1.2) in several

layers of the model. As a result, units become tuned to key image-features that occur with

high probability in natural images. During this unsupervised learning stage, the model is

exposed to a few hundred random natural images, unrelated to any categorization task.

The resulting dictionary of features is generic in the sense that, as we show below, it

can support the recognition of a large variety of object categories. As discussed earlier in

Chapter 2, this dictionary of shape-components is redundant and overcomplete and con-

tains features of various complexities. For instance, the simplest features (i.e., a simple

combination of V1-like oriented subunits with small range of invariance and correspond-

ing to cells in V4 (see Chapter 3) are computed at the S2 level, whereas more complex

features (e.g., object-part detectors with a larger range of invariance which may be similar

to some of the features found in TEO columns [Fujita et al., 1992; Wang et al., 1996; Tanaka,

1996, 1997; Wang et al., 1998; Tanaka, 2003]) are computed higher up in the hierarchy (lay-

ers C3 and C2b).

All the experiments presented here were, however, performed with an earlier imple-

mentation of the model which is simpler than the one described in Chapter 2. The precise

architecture is illustrated in Fig. 4-2. Some of the routes are missing (see translucent com-

ponents of the model in Fig. 4-2). In particular, the route from S2 → C2 → S3 → C3

is absent. As we confirmed experimentally, while the full architecture performs signifi-

cantly better than this simpler implementation (e.g., in Chapter 5, the complete dictionary

of shape-components is necessary to account for the level of performance of human ob-

servers), we believe that results would remain qualitatively similar with the full architec-

ture. Additionally, this “simplified” implementation presents the advantage that it runs

significantly faster than the full implementation and therefore allows more experiments to

be completed.
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Figure 4-2: Schematic of the “simplified” architecture used here (based on an earlier model imple-
mentation). Some of the routes are missing (indicated in translucent). During training, examples
are stored at the level of the S4 units which provide a holistic and view-based representation of target
objects. At the top of the hierarchy, PFC classification units combine the response of several S4 units.
The PFC classification units perform simple binary classification tasks (object present / absent). Dur-
ing training (which is the only supervised learning stage in the model), one PFC classification unit
is learned for each of the object categories). By comparing the response of a single PFC classification
unit in the presence and absence of its associated target object, the model can be evaluated on a
detection task. By considering the response of all the classification units and assigning to the input
image the label of the classification unit which is maximally activated, the model can be evaluated
on a more challenging N -alternative forced (see Fig. 4-4).

To train the model to perform different categorization tasks (e.g., face present / absent),

we trained the task-specific circuits at the top of the hierarchy (i.e., the S4 and PFC units).

This was done by performing random splits (between images used for training and images

used for testing the model) over each image dataset. That is, for each image category, we

selected a variable number NTr of images for training and up to NTe = 50 images for
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testing (from the remaining images, not used for training). This procedure is also called

leave-out procedure (see [Devroye et al., 1996]) and has been shown to provide a good

estimate of the expected error of a classifier.

As described in Chapter 2, the task-specific circuits of the model are trained in a super-

vised way and in two steps. For each object category:

1. Typical examples (i.e., ≈ 25% of the training set) from the target object set are stored

at the level of the S4 units (one S4 per example to be stored). The S4 units provide a

holistic and view-specific representation of familiar objects [Logothetis et al., 1995] at

the level of AIT (see Chapter 1, Section B).

2. One PFC classification unit in PFC is trained, i.e., its synaptic weights c (see Eq. 2.1)

are adjusted so as to minimize the classification error on the training set (Eq. 2.2).

During the test period, we compute the error of the PFC classification units on the set

of test images (not used for training). For each image category we plot an ROC curve 2

and estimate the area under the curve as the performance measure for the model (as in

[Fei-Fei et al., 2004]). The procedure is re-iterated 10 times for each category: Each time we

generate a different training and test set at random, train one PFC classification unit with

the procedure described above, then evaluate the performance on the test set and evaluate

the area under the ROC curve. We report the average performance across these 10 random

runs.

Sample results: Fig. 4-3(b) shows some typical results from sample object categories. The

performance of the model is remarkable given the fairly small number of training exam-

ples used (< 100). Typical computer vision systems generally use thousands of training

examples [Sung, 1996; Osuna, 1998; Schneiderman and Kanade, 2000; Heisele et al., 2002].

Indeed, in [Serre et al., 2005b], we found that the size of the training set could be further

reduced and that reasonably good performance could be obtained with very few training

examples (just 3−6 positive training examples). The reader may refer to [Serre et al., 2005b,

2006b] and Appendix B for more extensive simulations and results on the CalTech-101 ob-

ject dataset.
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(a) Sample distractors

crocodile head : 96.90 panda : 94.20 lobster : 90.80emu : 90.40 metronome : 96.90

saxophone : 95.50 snoopy : 94.20 headphone : 96.70brontosaurus : 95.70 camera : 91.20

mandolin : 91.40 pigeon : 92.00 pagoda : 97.10hedgehog : 91.50 scissors : 97.90

rooster : 94.60 octopus : 94.80 platypus : 91.60gramophone : 92.80 ant : 94.60

(b) Sample results on the CalTech-101 object database

Figure 4-3: a) Typical distractors used to evaluate the performance of the model on an object present
vs. absent task. b) Sample results obtained with the model on the CalTech-101 object database. The
paradigm used here to evaluate the performance of the model is standard (see [Fei-Fei et al., 2004]
for instance). Like observers in rapid-categorization tasks, the model classifies a particular stimulus
as object (e.g., an animal) present or absent. For all categories, the set of distractors was sampled at
random from a separate background image set a) containing a large number of scenes (at different
scales) that do not contain any of the target objects (see [Fei-Fei et al., 2004]). Each thumbnail
illustrates a typical example from the image set and the number above corresponds to the average
performance across 10 random runs. In each run, the model is trained using a small number of
labeled examples (see text) and tested on a separate set.
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A.2 Approximating the Key Computations

In the experiment described above, the model implementation used relies on exact com-

putations of the two key operations, i.e., an exact Gaussian TUNING (Eq. 1.2) and an exact

MAX operation (Eq. 1.1). Yet, this is unrealistic and as discussed in Chapter 1, biophysically

plausible circuits would, at best, implement crude approximations of the two operations.

Another idealization from the previous experiment comes from the use of continuous ana-

log unit responses. As illustrated in Fig. 1-5, circuits implementing the key operations are

likely to rely on quantized values provided by computational modules, i.e., groups of n equiv-

alent cells (see Chapter 1). The level of quantization, in turn, is determined by the number

n of equivalent units within each module. The precise nature of such modules and the

number of cells they contain is yet to be determined both experimentally and theoretically.

While it will be important in the future to test the model with more realistic biophysical

circuits of the key operations (the advent of large-scale neural architectures such as Blue

Brain will certainly provide the computational machinery necessary), we start here more

modestly and test the robustness of the model to “simplifications” which take the form of

various approximations in the circuits involved in the TUNING operation.

First we test how critical is the use of analog continuous responses at the level of in-

dividual units. While we think that several levels of quantizations are certainly necessary

in the lowest levels (at the S1 and C1 levels), we suggested in Chapter 1, based on the

anatomy and physiology of the ventral stream, that the number n of units in individual

computational module may decrease along the hierarchy, with units in the higher-most

layers behaving essentially as switches (being either ON or OFF). We here test this hypoth-

esis more directly by binarizing the response of the units in an intermediate layer of the

model, the C2b layer (corresponding to cortical area TEO) which gives inputs to the S4

units (corresponding to the view-tuned units in TE).

Here, we also test the robustness of the model to different TUNING approximations at

the S4 level and compare the performance of a) an exact Gaussian function (Eq. 1.2), b)

a normalized dot-product (Eq. 1.3) and c) a simple dot-product (i.e., when dropping the

normalization term in Eq. 1.3).

Methods: All experiments in the following were performed on a subset of the CalTech-101

object dataset. We first selected image categories that contained at least 150 examples so as
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to perform several random runs with 100 training and 50 test examples selected at random

for every run. This lead to five categories, i.e., faces, leopards, motorcycles, airplanes and

watches as well as an additional set of distractors from the background category.

To test the model dependency on the use of analog vs. binary values we compared

the performance of the standard model implementation (i.e., analog values) with a model

implementation that relies on binary unit responses in one of the intermediate (C2b) layers,

which then provides inputs to the S4 units. We first calculated a response threshold θ for

each of the C2b units such that the corresponding unit would be active on P% of the entire

training set and inactive on the remaining 100 − P%. We experimented with different

values of P , i.e., P = 10%, 30%, 60%. The performance of the model was evaluated with

two different paradigms:

• A target present/absent paradigm (chance level 50%) for each of the five classes sep-

arately, i.e., each recognition task was evaluated as an independent binary classifi-

cation problem. Distractors were randomly sampled from the same separate set of

distractors (“background” category);

• A N -alternative forced choice paradigm (where N = 5 is the total number of classes,

chance level 20%), i.e., each image presented has to be classified by the model as

either one of five possible categories.

Fig. 4-4 and 4-5 show simulation results for P = 30%. When the number of afferents

is large enough (> 100), the loss in performance induced by the binarization of the units

becomes negligible. Note that we found qualitatively similar results for P = 10% and

P = 60% (not shown) and observed a large drop in performance for higher values of P .

These results show that the model does not rely critically on exact computations and

can rely on approximations. This, in turn, suggests that the performance obtained with

idealized operations may generalize to approximate operations performed in biophysically

plausible circuits. The results of the simulations give support to the hypothesis from Chap-

ter 1. That is, the size of the computational modules (i.e., the number n of equivalent units

that receive the same inputs and encode the same feature dimension) may decrease along

the hierarchy with units in the top-layers behaving essentially like switches (being either

ON or OFF).
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(a) The CalTech airplane dataset

(b) The CalTech motorcycle dataset

(c) The CalTech face dataset

(d) The CalTech leaf dataset

(e) The CalTech car dataset

Figure 4-6: The CalTech datasets used to compare the model to other benchmark AI systems [Weber
et al., 2000b; Fergus et al., 2003].
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(a) The MIT-CBCL car dataset

(b) The MIT-CBCL face dataset

Figure 4-7: The MIT-CBCL datasets used to compare the model to other benchmark AI systems
[Heisele et al., 2002; Leung, 2004].

B Comparison with Standard AI Recognition Systems

For a more rigorous and objective evaluation, in this section, we compare the performance

of the model to other AI recognition systems. For this comparison we used standard

datasets (see Fig. 4-6 and Fig. 4-7) from two vision groups, i.e., two MIT-CBCL datasets

from our own group and five (CalTech-5) datasets from the CalTech vision group.

CalTech-5: We consider five databases from the CalTech vision group3, i.e., frontal-face,

motorcycle, rear-car and airplane datasets from [Fergus et al., 2003], as well as the leaf

dataset from [Weber et al., 2000b] (see Fig. 4-6 for examples). On these datasets, we

used the same fixed splits as in the corresponding studies whenever applicable and other-

wise generated random splits. All images were rescaled to be 140 pixels in height (width

was rescaled accordingly so that the image aspect ratio was preserved) and converted to

grayscale.

MIT-CBCL: This includes a near-frontal (±30◦ ) face dataset [Heisele et al., 2002] and a

multi-view car dataset from [Leung, 2004] (see Fig. 4-7). The face dataset contains about

6,900 positive and 13,700 negative images for training and 427 positive and 5,000 negative

images for testing. The car dataset contains 4,000 positive and 1,600 negative training

examples and 1,700 test examples (both positive and negative). Although the benchmark

algorithms were trained on the full sets and the results reported accordingly, our system

only used a subset of the training sets (500 examples of each class only).
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These two MIT-CBCL datasets are challenging: The face patterns used for testing are a

subset of the CMU PIE database [Sim et al., 2001] which contains a large variety of faces

under extreme illumination conditions (see [Heisele et al., 2002]). The test non-face pat-

terns were selected by a low-resolution LDA classifier as the most similar to faces (the

LDA classifier was trained on an independent 19 × 19 low-resolution training set). The

car database includes a wide variety of vehicles, including SUVs, trucks, buses, etc , under

wide pose and lighting variations. Random image patterns at various scales that were not

labeled as vehicles were extracted and used as a negative test set.

Methods: For this comparison, we also used the earlier (simpler) implementation of the

model (see Fig. 4-2) which corresponds to the route projecting from S1 → C1 → S2b →

C2b. Again, the performance of the full architecture which include a richer dictionary of

shape-components, tends to be significantly higher than the performance of this simpler

(incomplete) implementation. Therefore the results reported here are likely to constitute

only a lower bound on the system performance.

Also, for a fair comparison with the benchmarks and in order to emphasize the con-

tribution of the feature representations rather than the classification modules, we passed

the response of the C2b units directly to a linear classifier. This allows for a more rigorous

comparison at the representation-level (model C2b units vs. computer vision features such

as SIFT [Lowe, 1999], component-experts [Heisele et al., 2002; Fergus et al., 2003; Fei-Fei

et al., 2004], or fragments [Ullman et al., 2002; Torralba et al., 2004]).

Results: Table 4.1 summarizes our main results. The model performs surprisingly well,

better than all the systems we have compared it to thus far. In Appendix B we provide

additional results and comparisons to other types of features (e.g., SIFT features [Lowe,

2004]). Altogether the results suggest that the model can outperform other AI systems

in different conditions such as, recognition of objects in clutter, recognition of objects in

segmented scenes (in combination with a scanning approach, see [Serre et al., 2006b]) and

for the recognition of shape-based (e.g., car, face, etc ) as well as texture-based (e.g., tree,

building, etc ) objects. Details about these comparisons may be found in [Serre et al., 2004b,

2005b; Bileschi and Wolf, 2005; Serre et al., 2006b].
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Datasets AI systems Model

(CalTech) Leaves [Weber et al., 2000b] 84.0 97.0
(CalTech) Cars [Fergus et al., 2003] 84.8 99.7
(CalTech) Faces [Fergus et al., 2003] 96.4 98.2
(CalTech) Airplanes [Fergus et al., 2003] 94.0 96.7
(CalTech) Motorcycles [Fergus et al., 2003] 95.0 98.0

(MIT-CBCL) Faces [Heisele et al., 2002] 90.4 95.9
(MIT-CBCL) Cars [Leung, 2004] 75.4 95.1

Table 4.1: The model vs. other AI benchmark recognition systems. For the CalTech-5 datasets
(i.e., leaf, car, face, airplane, and motorbike), the objects are presented in clutter and all the sys-
tems are trained and tested on unsegmented images. The benchmark systems are the constellation
models by Perona and colleagues [Weber et al., 2000b; Fergus et al., 2003], which rely on part-based
generative models of the object. For the MIT-CBCL face dataset we compare with a hierarchi-
cal SVM-based architecture that was, by itself, shown to outperform several other face-detection
systems [Heisele et al., 2001c, 2002]. For the MIT-CBCL car dataset we compared to a system by
[Leung, 2004] that uses fragments [Ullman et al., 2002] and similar to [Torralba et al., 2004]. The
performance measure reported is the performance at equilibrium which corresponds to the error rate
for which the miss rate is equal to the false-alarm rate, see [Serre et al., 2005b, 2006b] for details.

C Discussion

To summarize, we described experiments which showed that:

• An implementation of the theory described in Chapter 2 is able to handle the invari-

ant recognition of many different object categories with the same basic dictionary of

shape-components.

• The model performs very well on simple detection tasks (i.e., object present / absent)

as well as more challenging N -alternative forced choice recognition tasks.

• The model does not seem to depend critically on the exactitude of the key compu-

tations (at least in the top layers) and various approximations can still support ro-

bust invariant recognition. In particular, because along the hierarchy units receive

more and more inputs, the TUNING operation may not need to be exact and indeed

a simple dot-product (which approximate well Gaussian tuning in high dimensional

space) may well be sufficient. Further work will be needed to test the robustness to

approximations to the key computations in lower stages.

We also found that in the top stages of the model, a graded responses along particular

feature dimensions may not be needed (as we originally anticipated) and that binary

unit responses (i.e., simply on or off ) may be sufficient to support robust invariant

recognition.
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We found that the level of performance achieved by the model is far from trivial and

that indeed the model can outperform other AI systems (this is the case on all the tests

we have performed thus far). Additionally, recent work is already suggesting that the

performance of the model can be further improved. On the CalTech-101 database, using a

(non-biological) multi-class SVM on all 101 categories with 15 training examples per class

averaged over 10 repetitions, we obtained 44% ± 1.14% correct classification rate [Serre

et al., 2006b].

By enlarging the dictionary of shape-components and computing additional gestalt-

like features (e.g., good-continuity detectors, circularity detectors and symmetry detec-

tors) within the same framework, Wolf & Bileschi obtained ≈ 51.2% ± 1.2% correct [Wolf

et al., 2006; Bileschi and Wolf, 2006]. Mutch & Lowe reported 56% correct by applying a

non-biological feature selection method [Mutch and Lowe, 2006]. Some of the best (non-

biological) systems include the system by [Holub et al., 2005b] (≈ 44% correct) and the

system by [Berg et al., 2005] (45% correct). To date results obtained within the framework

of the theory constitute the state-of-the-art.

Typically, previous models of object recognition have been tested on idealized stimulus

set (of the type used in physiology labs) such as simple combinations of bars, or faces pre-

sented on a blank background. For instance, using the same paperclip stimuli as used in a

psychophysics [Logothetis et al., 1994] and physiology experiment [Logothetis et al., 1995],

Riesenhuber & Poggio showed that an earlier implementation of the model presented here,

was able to account quantitatively for the tuning properties of the view-tuned units in in-

ferotemporal cortex, which respond to images of the learned object more strongly than to

distractor objects, despite significant changes in position and size [Riesenhuber and Pog-

gio, 1999a].

The capacity of the architecture to handle the recognition of a variety of real-world

object recognition tasks (i.e., presence of clutter and changes in appearance, illumination,

etc ) provides another compelling plausibility proof for this class of models. This may

be the first time that a neurobiological model, faithful to the anatomy and physiology of

visual cortex, competes with engineered computer-vision systems.

Indeed, while a long-time goal for computer vision has been to build a system that

achieves human-level recognition performance, the state-of-the-art algorithms have been

diverging from biology: for instance, some of the best existing systems use geometrical
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information about the constitutive parts of objects (constellation approaches rely on both

appearance-based and shape-based models [Weber et al., 2000b; Fergus et al., 2003; Fei-

Fei et al., 2004] and component-based systems use the relative position of the detected

components along with their associated detection values [Heisele et al., 2002]). Biology is

however unlikely to be able to use geometrical information – at least in the cortical stream

dedicated to shape processing and object recognition. The model respects the properties

of cortical processing (including the absence of geometrical information) while showing

performance at least comparable to the best computer vision systems.

The fact that this biologically-motivated model outperforms more complex computer

vision systems might at first appear puzzling. The architecture performs only two kinds

of computations (TUNING, equivalent to template matching in computer vision and MAX

pooling, also used in computer vision to suppress multiple detections within a neighbor-

hood). Some of the other systems we have compared it to involve complex computations

like the estimation of probability distributions [Weber et al., 2000b; Fergus et al., 2003; Fei-

Fei et al., 2004] or the selection of facial-components for use by an SVM [Heisele et al.,

2002].

It is likely that part of the strength of the model comes from its built-in gradual invari-

ance to position and scale that closely mimics visual cortical processing, which has been

finely tuned by evolution over thousands of years. It is also very likely that such hierarchi-

cal architecture ease the recognition problem by decomposing the task into several simpler

ones at each layer.

Finally it is worth pointing out that the set of shape-component features that is passed

to the final classifier is very redundant, probably more redundant than for other approaches.

While we showed that a relatively small number of features (about 50) is sufficient to

achieve good error rates [Serre et al., 2005b], we have found that the level of performance

of the model can be significantly increased by adding many more features. Interestingly,

the number of features needed to reach the ceiling (≈ 1, 000 − 5, 000 features, i.e., about

the same number of feature columns found by Tanaka and colleagues [Tanaka, 1996], see

Chapter 2) is much larger than the number used by current AI systems (≈ 10 − 100 for

[Ullman et al., 2002; Heisele et al., 2002; Torralba et al., 2004] and ≈ 4 − 8 for constellation

approaches [Weber et al., 2000b; Fergus et al., 2003; Fei-Fei et al., 2004]).
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Notes

1The CalTech-101 database is available at:

http://vision.caltech.edu/Image_Datasets/Caltech101 /Caltech101.html .

2Using ROC curves to evaluate the performance of a system is common practice in com-

puter vision. By adding a bias term to the output of a classifier (here the PFC units), one can

arbitrarily increase or decrease the propensity of the system to classify an image as target

or distractor. An ROC curve can be obtained by computing the hit rate and the false-alarm

rates of the system for all possible values of the bias. Typically the system performance will

range from 0% hit and false-alarm rates for small values of the bias term (i.e., all images

classified as distractors) to 100% hit and false-alarm rates for large values of the bias term

(i.e., all images classified as targets). Typically meaningful operating ranges are obtained

for intermediate values of the bias term. The overall performance of the system can be

summarized by the area under the curve.

3The CalTech-5 databases are publicly available at:

http://www.robots.ox.ac.uk/ ˜ vgg/data3.html .

4The source code for the model implementation described in Fig. 4-2 is available at:

http://cbcl.mit.edu/software-datasets .

5The simpler model implementation used here may correspond to a bypass route in cor-

tex (effectively skipping two stages – V4 and TE – in cortex) that projects from V2 directly

onto TEO and then from TEO directly onto PFC. In fact, our results suggest that a sim-

ilar bypass route in cortex could account for some of the fastest reaction times (120 ms)

observed in human observers during a forced-choice saccade task [Kirchner and Thorpe,

2005] and which seem irreconcilable with a full processing by the entirety of the ventral

stream.

6The model, in its present form, does not make use of any special mechanisms for bind-

ing features together (e.g., synchrony, etc ) and is therefore with general shape-processing

during pre-attentive vision.



C. DISCUSSION 115

Acknowledgments

Part of this Chapter appeared in [Serre et al., 2005b, 2006b]. The evaluation of the model

on real-world image datasets was done in collaboration with Lior Wolf and Stan Bileschi

at CBCL. I would also like to thank Max Riesenhuber, Jennifer Louie, Rodrigo Sigala and

Robert Liu for their contributions in earlier phases of this work.



116 CHAPTER 4. PERFORMANCE ON NATURAL IMAGES



Chapter 5

Predicting Human Performance in a

Rapid Categorization Task

We showed earlier in Chapter 4 that the model is capable of recognizing well complex

images and, when tested on real-world natural images, it competes with and sometime

even outperforms state-of-the-art computer vision systems on several categorization tasks.

It is therefore natural to ask, in this Chapter, whether the model may be able to duplicate

human-level performance in complex recognition tasks. This Chapter corresponds to a

manuscript in preparation [Serre et al., 2006a].

Abstract

Primates are remarkably good at recognizing objects. The level of performance of the pri-

mate visual system and its robustness to image degradations have remained unchallenged

by the best computer vision systems despite decades of engineering effort. In particular,

the high accuracy of primates in ultra-rapid object categorization [Thorpe et al., 1996] and

rapid serial visual processing [Potter, 1975] is remarkable. Given the number of process-

ing stages involved and typical neural latencies, such rapid visual processing is likely to

be mostly feedforward [Thorpe et al., 1996; VanRullen and Koch, 2003; Bacon-Mace et al.,

2005; Kirchner and Thorpe, 2005].

Yet, so far, no biologically plausible feedforward model of visual cortex has been shown

to be capable to perform at human level. Here we show that a specific implementation

[Riesenhuber and Poggio, 1999a; Serre et al., 2005a] of a class of feedforward theories of ob-
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ject recognition [Hubel and Wiesel, 1968; Fukushima, 1980; Perrett and Oram, 1993; Wallis

and Rolls, 1997; Mel, 1997; Hochstein and Ahissar, 2002; Ullman et al., 2002; Thorpe, 2002;

Amit and Mascaro, 2003; Wersing and Koerner, 2003] – that extend the Hubel & Wiesel

simple-to-complex cell hierarchy and account for many anatomical and physiological con-

straints – can predict the level and the pattern of performance achieved by humans on a

rapid animal vs. non-animal categorization task.

A Introduction

Object recognition in cortex is mediated by the ventral visual pathway running from pri-

mary visual cortex (V1) through extrastriate visual areas V2 and V4 to inferotemporal cor-

tex (IT, comprising PIT and AIT) and then to prefrontal cortex (PFC) which is involved in

linking perception to memory and action. Over the last decade, a number of physiologi-

cal studies in non-human primates have established several basic facts about the cortical

mechanisms of recognition. The accumulated evidence points to several key features of

the ventral pathway. From V1 to IT, there is an increase in invariance to position and scale

[Hubel and Wiesel, 1968; Perrett and Oram, 1993; Logothetis et al., 1995; Tanaka, 1996;

Riesenhuber and Poggio, 1999a] and, in parallel, an increase in the size of the receptive

fields [Perrett and Oram, 1993; Tanaka, 1996] as well as in the complexity of the optimal

stimuli for the neurons [Desimone, 1991; Perrett and Oram, 1993; Kobatake and Tanaka,

1994]. Finally plasticity and learning are probably present at all stages, and certainly at

the level of IT [Logothetis et al., 1995] and PFC. However an important aspect of the vi-

sual architecture – the role of the anatomical back-projections abundantly present between

almost all of the areas in visual cortex – remains a matter of debate.

It is well known that recognition is possible for scenes viewed in rapid visual presenta-

tion that do not allow sufficient time for eye movements [Potter, 1975; Thorpe et al., 1996;

Thorpe and Fabre-Thorpe, 2001; VanRullen and Koch, 2003; Bacon-Mace et al., 2005] and

in the near-absence of attention [Li et al., 2002]. The hypothesis that the basic processing

of information is feedforward is supported most directly by the short times required for a

selective response to appear in IT cells [Perrett et al., 1992]. Very recent data [Hung et al.,

2005] convincingly show that the activity of small neuronal populations in monkey IT, over

very short time intervals (as small as 12.5 ms) and only about 100 ms after stimulus onset,

contains surprisingly accurate and robust information supporting a variety of recognition
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tasks. Furthermore, EEG studies [Thorpe et al., 1996] have provided evidence that the hu-

man visual system is able to solve an object detection task – determining whether a natural

scene contains an animal or not – within 150 ms (see [Kirchner and Thorpe, 2005] for time

estimates based on eye movements with a forced-choice saccade task). While this does not

rule out the use of local feedback loops within an area, it does suggest that a core hierar-

chical feedforward architecture may be a reasonable starting point for a theory of visual

cortex, aiming to explain the initial phase of recognition which may be called immediate

recognition.

One of the first feedforward models, Fukushima’s Neocognitron [Fukushima, 1980],

followed the basic Hubel & Wiesel hierarchy [Hubel and Wiesel, 1968] in a computer vi-

sion system. Building upon several conceptual proposals [Perrett and Oram, 1993; Wallis

and Rolls, 1997; Mel, 1997; Hochstein and Ahissar, 2002; Ullman et al., 2002; Thorpe, 2002;

Amit and Mascaro, 2003; Wersing and Koerner, 2003], we developed [Riesenhuber and

Poggio, 1999a; Serre et al., 2002; Giese and Poggio, 2003; Serre et al., 2005a] a similar com-

putational theory that attempts to quantitatively account for a host of recent anatomical

and physiological data. The model [Riesenhuber and Poggio, 1999a; Serre et al., 2002,

2005a] shown in Fig. 5-1 (see Methods) is qualitatively and quantitatively consistent with

(and in some cases actually predicts) several properties of cells in V1 [Lampl et al., 2004],

V2, V4 (see Chapter 3 and [Serre et al., 2005a; Gawne, 2000]) and IT [Riesenhuber and Pog-

gio, 1999a] as well as fMRI and psychophysical data [Riesenhuber et al., 2004]. Plausible

biophysical circuits may implement the two key operations (see Chapter 2 assumed by the

theory within the time constraints of the experimental data [Perrett et al., 1992; Hung et al.,

2005]).

The main extension with respect to the original model [Riesenhuber and Poggio, 1999a]

is an unsupervised learning of the tuning of each unit at the S2, S2b and S3 levels (possibly

corresponding to V4 and PIT, see Fig. 5-1 and Methods) on a set of natural images unre-

lated to the task. In the present model, units (of the S type) become tuned to the neural

activity induced by natural images within their receptive fields. We conjecture from our

simulations that the resulting large number of tuned units constitutes a universal and re-

dundant dictionary of features [Ullman et al., 2002], which is invariant (to some extent)

to translation and scale and can support the recognition of many different object cate-

gories (such as animals, cars and faces, see Chapter 4 and [Serre et al., 2005b]). When
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tested on real-world natural images, the model competes with and sometimes even out-

performs state-of-the-art computer vision systems on several categorization tasks [Serre

et al., 2005a,b] (see also Chapter 4). This is quite surprising, given the many specific bio-

logical constraints that the theory satisfies.

It is therefore natural to ask whether any such feedforward model may be able to du-

plicate human-level performance in natural, complex recognition tasks. Normal, every-

day vision includes top-down effects which must be mediated by the extensive anatomi-

cal back-projections found throughout visual cortex [Bullier, 2001]. Back-projections may

effectively control the “programs” and circuits, for instance in PFC, that read out in a task-

dependent way the information from lower visual areas (e.g., is the object in the scene an

animal? how big is it?) [Hung et al., 2005]. They could in addition influence areas lower

than IT during or before the task, for instance by modulating connections. The key claim

of feedforward models, such as the one presented here, is that the first 150 ms of visual

perception do not involve significant feedback dynamics.

Just like an experimental test of Newton’s second law requires choosing a situation in

which friction is negligible, we looked for an experimental paradigm in which recognition

has to be fast and cortical back-projections are likely to be inactive. The paradigm we use to

compare human performance to that of a feedforward model of visual processing is ultra-

rapid object categorization. The task is the classical animal vs. non-animal recognition task

[Thorpe et al., 1996; Thorpe and Fabre-Thorpe, 2001; VanRullen and Koch, 2003; Rousselet

et al., 2003; Bacon-Mace et al., 2005]. Animals in natural scenes constitute a challenging

class of stimuli due to large variations in shape, pose, size, texture, and position in the

scene.

We used a backward masking protocol (1/f noise image with a duration of 80 ms,

see Fig. 5-2a). Previous studies have suggested that a backward mask can interrupt vi-

sual processing [Kovács et al., 1995; Rolls et al., 1999; Keysers et al., 2001] and block back-

projections [Bacon-Mace et al., 2005]. To vary the difficulty of the task and prevent human

observers and the model from relying on low-level cues, we used four sets of balanced

image categories (150 animals and 150 matching distractors), each corresponding to a par-

ticular viewing-distance from the camera, from an animal head to a small animal or groups

of animals in cluttered natural backgrounds (i.e., head, close-body, medium-body and far-body

categories, see Fig. 5-2b and Supp. Info.).
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Figure 5-1: Schematic of the model implementation used in the comparison with human-observers
on the animal vs. non-animal categorization task. The theory assumes that one of the main func-
tions of the ventral stream is to achieve a trade-off between selectivity and invariance. As in
[Riesenhuber and Poggio, 1999a], stages of simple S units with Gaussian tuning (plain circles and
arrows), are interleaved with layers of complex C units (dotted circles and arrows), which perform
a max operation on their inputs and provide invariance to position and scale (pooling over scales
is not shown in the figure). The major extension in this model relative to [Riesenhuber and Poggio,
1999a] is that unsupervised learning, on a set of natural images unrelated to the task, determines
the tuning (e.g., the synaptic weights) of the simple units in the S2 and S3 layers (corresponding to
V4 and PIT, respectively). Learning of the synaptic weights from S4 to the top classification units is
the only task-dependent, supervised learning stage in this architecture. The total number of units
in the model is in the order of 107. Colors indicate the correspondence between model layers and
cortical areas. The table on the right provides a summary of the main properties of the units at the
different levels of the model. The diagram on the left is modified from Van Essen & Ungerleider
[Gross, 1998] (with permission by the authors).
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Figure 5-2: a) Schematic of the task. A stimulus (gray-level image) is flashed for 20 ms, followed by
a blank screen for a variable duration denoted ISI (inter-stimulus interval) and followed by a mask
for 80 ms. We tested four conditions: immediate-mask, 30 ms ISI, 60 ms ISI and no-mask. Subjects
ended the trial with a yes/no answer by pressing one of two keys. b) The four (balanced) classes of
stimuli. Animal images (a subset of the image database used in [Thorpe et al., 1996]) were manually
arranged into four groups (150 images each) based on the animal-distance from the camera: head
(close-up), close-body (animal body occupying the whole image), medium-body (animal in scene
context) and far-body (small animal or groups of animals). Each of the four classes corresponds to
different animal sizes and modulates the task difficulty (see Fig. 5-3). A set of matching distractors
(300 each from natural and artificial scenes, see Supp. Info.) was selected, so as to prevent human
observers and the computational model from relying on low-level cues.
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Before the model can be tested on the animal vs. non-animal categorization task, it

has to be trained. The only task-specific training required involves the circuits at the top

level in the model, i.e., the linear classifier (possibly at a level such as PFC) that “looks”

at the activity of several hundred S4 units [Hung et al., 2005]. Such classifier is trained on

a specific task (i.e., animal vs. non-animal) in a supervised way (see Methods and Supp.

Info.). This stage requires a relatively small number of examples (∼ 100). The classifier

was trained using n random splits on the entire database of images. In a given run, half

the images were selected at random for training and the other half was used for testing the

model (see Supp. Info.).

In the present version of the model, processing by the units (the nodes of the graph in

Fig. 5-1) is approximated as essentially instantaneous (see however possible microcircuits

involved in the tuning and max operation in [Serre et al., 2005a]). All the processing time

would be taken by synaptic latencies and conduction delays (see Supp. Info.). The model

was compared to human observers in three different experiments.

B Experiment 1

In experiment 1, we replicated previous psychophysical results [Bacon-Mace et al., 2005]

to test the influence of the mask on visual processing with four experimental conditions,

i.e., when the mask followed the target image a) without any delay (immediate-mask condi-

tion), b) with a short inter-stimulus interval of 30 ms (30 ms ISI), c) with an ISI of 60 ms

or d) never (no-mask condition). For all four conditions, the target presentation was fixed

to 20 ms. The performance in immediate- and no-mask conditions establishes lower and

upper bounds on human performance (in the absence of eye movements). A compari-

son between the performance of human observers (n = 21) and the feedforward model is

shown in Fig. 5-3.

We found that the accuracy (hits) of the human observers was well within the range of

data previously obtained with go/no-go tasks [Thorpe et al., 1996; VanRullen and Koch,

2003; Bacon-Mace et al., 2005]. The subjects’ level of performance reached a ceiling in the

60 ms ISI condition (except when the animal was camouflaged in the scene, i.e., far-body

group). As expected, the delay between the stimulus and the mask onset (i.e., the ISI)

modulates the level of performance of the observers, improving from bare recognition in
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the immediate-mask condition to ceiling in the no-mask condition.

The shaded area in Fig. 5-3c defines a range of likely admissible detection performance

that would correspond to the human visual system operating in its feedforward mode (see

Supp. Info.). The model performance is well within this area and predicts human-level

performance between the 30 ms ISI and 60 ms ISI conditions. The implication is that, for

this range of ISI, the back-projections do not play a significant role and that the model may

indeed provide a satisfactory description of the feedforward path (see Supp. Info.).

C Experiment 2

In experiment 2, we further refined the comparison between the model and human ob-

servers by testing subjects (n = 24) on a single mask condition (30 ms ISI). To take into

account responses to both target and distractor stimuli, we report here a sensitivity mea-

sure from signal detection theory [Macmillan and Creelman, 1991] called d′, that is the

standardized difference between the means of the hit and false-alarm distributions of each

observer (error rates and hits would give similar results, see Supp. Info.).

As shown in Fig. 5-4a, human observers behave similarly to the model: for all four

animal categories, their levels of performance do not show significant differences (with

overall correct 80% for human observers and 82% for the model) and they both exhibit

a similar trend on the four groups (close-body being the simplest and far-body the most

difficult). The performance of the model is remarkable, given the comparatively lower per-

formance of other computational systems that have been previously compared to human

observers on rapid categorization tasks and that rely on low-level cues.

The benchmark computer vision systems (see Supp. Info.) were Torralba & Oliva’s

global features [Torralba and Oliva, 2003] (75% correct) and Malik and colleagues’ textons

[Renninger and Malik, 2004] (62% correct). Lower levels in the hierarchical architecture of

the model did also have a lower performance (see Fig. 5-4a, Supp. Info. and [Torralba and

Oliva, 2003]).

We also looked at the agreement between human observers and the model on individ-

ual images (see Fig. 5-4b). For each image in the database, we computed the percentage

of subjects (right number above each thumbnail in Fig. 5-4b) who classified it as an animal

(irrespective of whether the image contains an animal or not). For the model, we com-
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Figure 5-3: Experiment 1: Comparison between the model and human observers with different
mask conditions. Model vs. human level accuracy measured by hits, i.e., the percentage of animals
correctly detected, for comparison with results using go/no-go tasks [Thorpe et al., 1996; VanRullen
and Koch, 2003; Bacon-Mace et al., 2005] (see Supp. Info. for error rates). The upper and lower
bounds on human-level performance (n = 21) are given by the no-mask condition (from 95% to
81%) and the immediate-mask condition (from 74% to 35%) respectively. The average accuracy
of human observers for the conditions with immediate-mask, 30 ms ISI, 60 ms ISI and no-mask
conditions were 59%, 79%, 86%and91% respectively - all significantly above chance (t-test, p < 0.01)
– compared to 82% for the model. The accuracy for all conditions is comparable to previously
published results in go/no-go tasks [Thorpe et al., 1996; VanRullen and Koch, 2003; Bacon-Mace
et al., 2005]. For human observers, the false-alarm rate does not vary significantly with the various
backward masking conditions (16%, 16%, 16% and 14%). The model matches human observers
for ISIs between 30 ms and 60 ms. Error bars indicate the standard error and are not directly
comparable for the model (computed over N random runs, see Supp. Info.) and for humans
(computed over n observers).

puted the percentage of times the model (left number) classified each image as an animal

for each of the random runs (n = 20). A percentage of 100% (50%) means that all (half)

the observers (either human observers or random runs of the model) classified this image

as an animal. The overall correlation on the percentages for the model and for human

observers was 0.71, 0.84, 0.71 and 0.60 for heads, close-body, medium-body and far-body

respectively (all values were statistically significant, p < 0.01).
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Figure 5-4: Experiment 2: Detailed comparison between the model, other computational bench-
marks and human observers. a) Model vs. other computational benchmarks vs. human-level ac-
curacy. To account for both hit and false-alarm rates, we here report the d′ sensitivity measure
[Macmillan and Creelman, 1991] (see text). Both the model and human observers performed best
on close-body views and worst on far-body views. Other computational benchmarks of object
recognition that rely on a combination of low-level features [Torralba and Oliva, 2003; Renninger
and Malik, 2004] were run on the same animal database (with the same training and test sets as
for the model) and showed lower categorization performance (see text). b) Comparison between
human observers and the model on individual images. From left to right are representative images
for which the model went from being correct to incorrect. The percentages above each thumbnail
correspond to the number of times the image was classified as animal by the model (left) or by
human observers (right, see text for details). Green (red) bounding boxes correspond to images for
which human observers and the model agree (disagree).
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D Experiment 3

Finally, in experiment 3, we measured the effect of image rotation (90o and 180o). Recent

behavioral studies [Rousselet et al., 2003; Guyonneau et al., 2005] suggested that the ani-

mal categorization task can be performed at different image orientations, thus providing

an interesting test for the model. As shown in Fig. 5-5, the level of performance of both

human observers (left) and the model (right) is quite robust to image rotation (except for

the far-body condition for which the prominent scene background is likely to influence

performance). The accuracy measures obtained for human observers and the model (see

Supp. Info.) are compatible with previous results by Thorpe and collaborators [Rousselet

et al., 2003; Guyonneau et al., 2005]. The robustness of the model is particularly remark-

able as it was not re-trained before being tested on the rotated images (it is unlikely that

human subjects had extensive experience with rotated images of animals). The fact that a

feedforward model - faithful to the physiology and anatomy of visual cortex - achieves a

level of accuracy comparable to humans on a difficult recognition task raises an intriguing

question with potentially rich implications for research in different domains of visual sci-

ences: what are the really difficult purely visual recognition tasks that need feedback and

the involvement of back-projections?

E Methods

Here we give a brief overview of the model implementation and learning techniques used.

Details about the model can be found in Chapter 2. Details on the human psychophysics

experiments can be found in Supp. Info.

E.1 Model architecture

The first stage of simple units (S1) which corresponds to the classical simple cells of Hubel

& Wiesel [Hubel and Wiesel, 1968], represents the result of a first tuning operation: Each

S1 unit receives LGN-like inputs and is tuned to an oriented bar with a Gaussian-like

profile. Each of the complex units (C1) in the second layer pools the outputs of a group

of neighboring simple units in the first layer. These units are at slightly different positions

and sizes but have the same preferred orientation. The pooling is performed by a max
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Figure 5-5: Experiment 3: Comparison between the model and human observers on rotated images.
We compared the performance (d′) obtained in three experimental conditions: upright, 90o rotation
and inverted (180o) for human observers (left) and the model (right). Both human observers and
the model were robust to image rotations (except for the far-body condition) and exhibited similar
patterns of performance.

operation such that the activity of the complex pooling unit is equal to the activity of the

strongest input.

At the next layer, each simple (S2) unit pools several complex (C1) units - with weights

dictated by the unsupervised learning stage - with different selectivities according to a

Gaussian tuning function, thus yielding selectivity to more complex patterns. Simple units

in higher layers (S3 and S4) combine more and more complex features with a Gaussian

tuning function, while the complex units (C2 and C3) pool their outputs through a max

function providing increasing invariance to position and scale. In the model, the two layers

alternate (though levels could conceivably be skipped, it is likely that only units of the S

type follow each other above C3).

Here we use a multivariate Gaussian for the tuning operation (see Eq. 1.2. The weight

vector w is learned with no supervision from natural images (see below). A complex unit

activity is given by a max operator (see Eq. 1.2). Despite the fact that a max operation

seems very different from a Gaussian tuning, they can both be implemented in terms of

biologically plausible normalized scalar product operations with a gain control circuit.
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Learning a universal dictionary of shape-tuned units in the model. Each unit in the simple

layers (S2, S2b and S3 sequentially) becomes tuned by exposing the model to a set of 1,000

natural images. For each image presentation, units become tuned to the pattern of activity

of their afferents (see Supp. Info.). This learning stage is similar to “imprinting” and could

possibly be mediated by a mechanism of the LTP type. In the model the learning stage

corresponds to setting each w to the pattern of pre-synaptic activity.

E.2 Classifier from IT to PFC

The linear classifier from IT to PFC used in the simulations corresponds to a supervised

learning stage with the form: (3) where characterizes the response to the input image x of

the ith S4 unit tuned to the training example xi (animal or non-animal) and c is the vec-

tor of synaptic weights from IT to PFC. The superscript i indicates the index of the image

in the training set and the subscript j indicates the index of the pre-synaptic unit. Since

the S4 units (corresponding to the view-tuned units in IT [Logothetis et al., 1995]) are like

Gaussian radial basis functions (RBFs), the part of the network in Fig. 5-1 comprising the

inputs to the S4 units up to PFC can be regarded as an RBF network (see Supp. Info.). Su-

pervised learning at this stage involves adjusting the synaptic weights c so as to minimize

a (regularized) error on the training set [Poggio and Bizzi, 2004] (see Supp. Info.).

F Supplementary Information

F.1 Supplementary Methods

Categorization by the human observers

For all three experiments, participants gave a written informed consent. All participants

were between 18 and 35 years old, with n = 21, 24 and 14, in experiments 1, 2 and 3 re-

spectively. There was approximately the same number of male and female observers in

each experiment and none participated in more than one of the three experiments. Par-

ticipants were seated in a dark room, 0.5 m away from a computer screen, connected to a

computer (Intel Pentium c© IV processor, 1 GB RAM, 2.4 GHz). The monitor refresh rate

was 100 Hz allowing stimuli to be displayed with a frame-duration of 10 ms and a reso-

lution of 1024 × 768. We used the Matlab c© (Mathworks Inc, Natick, MA) software with
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the psychophysics toolbox [Brainard, 1997; Pelli, 1997] to precisely time the stimulus pre-

sentations. In all experiments, the image duration was 20 ms. In experiment 1, the mask

appeared after an inter-stimulus interval (ISI) of 0 ms (corresponding to a Stimulus Onset

Asynchrony – SOA – of 20 ms), 30 ms (SOA = 50ms), 60 ms (SOA = 80ms), or infinite

(i.e., never appeared). In experiments 2 and 3, we tested a fixed ISI of 30 ms (SOA = 50ms).

The mask following the picture was a (1/f) random noise mask, generated by filtering ran-

dom noise through a Gaussian filter. The stimuli were presented in the center of the screen

(256 × 256 pixels, gray-level images). All images had a mean average luminance of 128

with pixel intensities ranging from 0 to 255. The 600 animal stimuli were grouped into

four categories with 150 exemplars in each, i.e., head, close-body, medium-body and far-body.

A set of distractors with matching mean distance from the camera (300 from natural and

300 from artificial scenes) was selected from a database of annotated mean depth images

[Torralba and Oliva, 2002]. We selected images with a mean distance from the camera

below 1 m for head, between 5 m and 20 m for close-body, between 50 m and 100 m for

medium-body as well as above 100 m and panoramic views for far-body. The 1,200 image

stimuli (600 animals and 600 distractors) were presented in random order and divided into

10 blocks of 120 images each. Participants were asked to answer as fast and as accurately

as possible if the image contained an animal, by pressing a yes or no key on a computer

keyboard. They were randomly asked to use their left or right hand for yes vs. no answers.

Each experiment took about thirty minutes to perform.

Task-independent unsupervised learning in the model

Here we used an extended version [Serre et al., 2002, 2005a] of the original model [Riesen-

huber and Poggio, 1999a] that relies on a simple learning rule to determine the tuning of

the S units from visual experience. In the original implementation of the model [Riesen-

huber and Poggio, 1999a] learning only occurred in the top-most layers (i.e., the units that

correspond to the view-tuned units in AIT [Logothetis et al., 1995] and the task-specific cir-

cuits from IT to PFC [Freedman et al., 2001]). In this initial simple version it was possible

to manually tune units in intermediate layers (simple 2× 2 combinations of 4 orientations,

see [Riesenhuber and Poggio, 1999a]) to be selective for the target object. It turns out that

the extended version with learning at all stages is more faithful to the physiology data and

performs significantly better in recognizing real-world images (such as faces with differ-
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ent illuminations, background, expression, etc ) [Serre et al., 2002; Louie, 2003; Serre et al.,

2005b,a].

During training, the model was exposed to a set of natural images (1, 000) collected

from the web (including landscapes, street scenes, animals) and unrelated to the catego-

rization task. For each image presentation, units became tuned to the pattern of activity

of their afferents. This was done for each layer sequentially, starting from bottom to top

(i.e., S2 and S2b first then S3). This can be regarded as an imprinting process in which each

S unit (e.g., , S2 unit) stored in its synaptic weights the specific pattern of activity from

its afferents (e.g., C1 units) in response to the part of the natural image that fell within its

receptive field.

In the Gaussian approximation used here (see Methods) this was done by setting w

to the pattern of pre-synaptic activity. A biologically plausible version of this rule could

involve mechanisms such as LTP. The image patch that fell within the receptive field of

a unit became its preferred stimulus with a bell-shape tuning profile. We assumed that

the images move (shifting and looming) so that each type of S unit was replicated across

the visual field. The tuning of units from S1 to S3 is fixed after this development-like

stage. Afterward, only the task-specific circuits from IT to PFC required learning for the

recognition of specific objects and object categories.

Task-dependent supervised learning and categorization by the model

We trained the classifier on a set of training examples as (xi, yi) pairs, where xi denotes the

ith image in the training set and yi its associated label (animal or non-animal). To train the

classifier that corresponds to the task-specific circuits from IT to PFC, we used a random-

split procedure which has been shown to give good estimates of a classifier expected error

[Devroye et al., 1996]. We performed n = 20 random runs. In each run, half of the 1,200

image examples from the database of stimuli in experiment 1, 2 and 3 was used for training

the model and the remaining half for testing it. For a test image x, the classifier response

is given by Eq. 2.1.

The model performance reported in experiment 1, 2, and 3 was averaged over these

n random runs. Note that the error bars for the model in Fig. 5-3, 5-4, 5-5 correspond to

the standard errors computed over these n = 20 random runs. Error bars are therefore

not directly comparable with those for human observers. In a separate experiment we
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trained four classifiers, one for each animal type (see Fig. 5-3), and further aggregated

their outputs for the animal vs. non-animal classification with similar results. It is possible

that better results could be obtained by training separate classifiers for different animal

species and then aggregating their outputs. In general, increasing the set of supervised

examples should improve the performance on the task.

Categorization by the benchmark computer systems

Global (context) features [Torralba and Oliva, 2003] were computed by convolving each

image in the database with a filter pyramid (24 Gabor filters covering several orientations

and scales) and further down-sampling to produce the resulting 4 × 4 × 24 image (4 × 4

is the number of samples used for each filter in this low-resolution representation). The

dimensionality of each of these 4×4×24 vectors was further reduced by applying principal

component analysis [Torralba and Oliva, 2003] producing, for each image in the database, a

feature vector x that provides a low-resolution encoding of the distribution of orientations

and scales across the entire image. The system performance was evaluated using n = 10

random splits (see [Oliva and Torralba, In press]). In each run half the images were used

to train a linear classifier on the feature vector x and the remaining half to evaluate its

performance.

Textons features [Renninger and Malik, 2004]. The software for the texture descriptors

called textons [Renninger and Malik, 2004] was kindly provided by Stan Bileschi at CBCL

(see paper by Bileschi & Wolf [Bileschi and Wolf, 2005]) directly as input to a classifier.

For each image in the database, a feature vector x was computed by concatenating the

response of a fixed subset of 1, 500 C1 model units. The system performance was evaluated

using (n = 20) random runs as for the model. In each run half the images were used to

train a linear SVM classifier on the feature vector x and the remaining half to evaluate its

performance. We found that the C1 layer responses yield a performance which is very

similar to the performance of humans on the immediate-mask condition (ISI = 0).

It is interesting to point out that the level of performance of the C1 layer is very similar

to the level of performance of the global context features of Torralba & Oliva. Because the

computational benchmarks rely on low-level features, it is not surprising that that they

perform worse than the feedforward model on a high-level recognition task such as ani-
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mal vs. non-animal categorization. This suggests the need for a representation based on

units with different levels of complexity and invariance as in the architecture of 5-1. An

independent study [Hung et al., 2005; Serre et al., 2005a] found a gradual improvement

(using layers in the model from bottom to top) in reading out several object categories (at

different positions and scales) from various model layers.

F.2 On Interrupting Back-Projections with the Mask

There is much debate about the effect of a mask – as used in the psychophysics described

here – on visual processing. A well accepted theory is the “interruption theory” that has

been in fact corroborated by physiological studies [Rolls and Tovee, 1994; Tovee, 1994;

Kovács et al., 1995; Rolls et al., 1999; Keysers et al., 2001] (see also [Lamme and Roelf-

sema, 2000]). The assumption is that the visual system processes stimuli sequentially (in

a pipeline-like architecture): when a new stimulus (the mask) is piped in, it interrupts the

processing of the previous stimulus (the target image).

Here we would like to try to isolate a purely feedforward sweep from further recur-

rent processing [Lamme and Roelfsema, 2000]. Whether or not the back-projections may

participate in the overall processing and contribute to the final performance is determined

by the delay between the stimulus and the mask, i.e., the SOA. If the delay ∆ taken by

the visual signal to travel from stage A to stage B and back to stage A is longer than the

SOA, this back-projection will not influence the processing in the visual system as it will

be interrupted before.

Based on estimates of conduction delays (see Fig. 5-6), extrapolated from monkey

[Nowak and Bullier, 1997; Thorpe and Fabre-Thorpe, 2001] to human [Thorpe, pers. comm.],

we think that in all our experiments, a SOA of 50 ms is likely to be the longest SOA before

significant feedback loops become active2, for instance, between IT and V4 (see Fig. 5-6, or-

ange arrows, ∆ ∼ 40− 60 ms). Importantly such an SOA should exclude major top-down

effects, for instance between IT and V1 (∆ ∼ 80 − 120 ms), while leaving enough time for

signal integration at the neural level.3

This estimate seems in good agreement with results from a Transcranial Magnetic Stim-

ulation (TMS) experiment [Corthout et al., 1999] that has shown a disruption of the feedfor-

ward sweep [Lamme and Roelfsema, 2000] for pulses applied between 30 ms and 50 ms

after stimulus onset.4 It is thus quite interesting that the model matches human perfor-
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Figure 5-6: Estimate of the timing of feed-
back loops in the ventral stream of primate
visual cortex (based on [Nowak and Bullier,
1997; Thorpe and Fabre-Thorpe, 2001]. We as-
sume that typical latencies from one stage to
the next is ∼ 10 ms and that feedforward and
back-projections have similar conduction times
[Nowak and Bullier, 1997]. The first number
corresponds to latencies for monkeys and is as-
sumed to constitute a lower bound on the la-
tencies for humans. The second number cor-
responds to an additional 50% and is assumed
to constitute a “typical” number for humans
[Thorpe, pers. comm.]. V1/V2

V4

AIT/PIT

PFC

<20-30 ms

~40-60 ms

~80-120 ms

~20-30 ms

mance almost exactly for an SOA of 50 ms, but underperforms it for longer SOAs. One of

the possible explanations is that this is due to back-projections which are not included in

the present, purely feedforward model of Fig. 1.

F.3 Supplementary Data

Tables 5.1 summarizes the mean and standard error of the reaction times for human ob-

servers and Tables 5.2 the 10th percentile. Tables 5.3 and 5.4 summarizes the main accuracy

measurements or both human observers and the model.

Notes

1Interestingly, consistent with the model described here, a recent RSVP study showed

that during a detection task, while observers were able to correctly detect the target, they

were, however, unable to accurately locate the target [Karla and Treisman, 2005].

2Note that for such SOA, local feedback loops green arrows in Fig. 5-6) are likely to be

already active (∆ < 20− 30 ms), see [Knierim and van Essen, 1992; Zhou et al., 2000].

3The mask is likely to interrupt the maintained response of IT neurons but not to alter

their initial selective response [Kovács et al., 1995; Rolls et al., 1999]. According to an inde-

pendent study [Hung et al., 2005] this would provide significantly more time than needed
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16 

533 

17 

Experiment 3 

Human 0
o 541 

23 

542 

22 

548 

23 

574 

21 

559 

26 

557 

27 

540 

25 

556 

26 

Human 90
o 549 

25 

546 

24 

566 

26 

603 

29 

560 

27 

544 

27 

552 

25 

548 

27 

Human 180
o 558 

25 

552 

23 

556 

25 

587 

24 

558 

24 

546 

25 

537 

24 

547 

26 

Table 5.1: Summary of mean reaction times (mean RT) and standard error mean (s.e.m.) for human
observers on correct responses (in ms).

(� 12.5 ms) to permit robust recognition in “reading out” from monkey IT neurons.

4The same experiment [Corthout et al., 1999] also demonstrated blockade of perception

by pulses applied between 80−120 ms, presumably corresponding to recurrent processing

[Lamme and Roelfsema, 2000] by the back-projections.
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10
th

 percentile Target Present Target absent 

 H C M F H C M F 

Experiment 1 

Human Im.-mask 356 353 351 359 370 373 371 368 

Human ISI 30 352 346 355 364 384 374 378 372 

Human ISI 60 349 351 352 370 384 397 376 377 

Human No-mask 348 348 356 367 388 386 377 381 

Experiment 2 

Human ISI 30 372 368 377 384 376 369 371 364 

Experiment 3 

Human 0
o

376 388 381 402 392 381 369 368 

Human 90
o

376 385 394 393 377 365 375 367 

Human 180
o

398 382 385 396 389 366 366 364 

Table 5.2: Summary of reaction times (10th percentile) for human observers on correct responses
(ms).
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 d’ Error rates Hits 

 H C M F H C M F H C M F 

Experiment 1 

Human Im.-mask 
1.48 

0.15 

1.88 

0.20 

1.52 

0.15 

0.81 

0.12 

0.27 

0.02 

0.22

0.03 

0.28

0.02 

0.40

0.02 

0.68

0.05 

0.74

0.04 

0.59 

0.05 

0.35 

0.05 

Human ISI 30 
2.37 

0.19 

2.52 

0.15 

2.19 

0.17 

1.55 

0.14 

0.16

0.02 

0.14

0.02 

0.17

0.02 

0.27

0.02 

0.87 

0.03 

0.90

0.02 

0.80 

0.03 

0.58  

0.04 

Human ISI 60 
2.69 

0.18 

2.64 

0.18 

2.6  

0.15 

1.84 

0.15 

0.13

0.02 

0.13

0.02 

0.13

0.02 

0.22

0.02 

0.92

0.02 

0.92

0.02 

0.89

0.02 

0.71 

0.03 

Human No-mask 
3.01

0.21 

2.82

0.16 

3.1 

0.18 

2.38 

0.16 

0.10

0.02 

0.11

0.02 

0.09

0.02 

0.15

0.02 

0.95

0.01 

0.94

0.01 

0.94 

0.01 

0.81 

0.02 

Model 
2.04 

0.07 

2.48 

0.07 

1.97 

0.05 

1.37 

0.05 

0.18 

0.01 

0.11 

0.01 

0.17 

0.01 

0.26 

0.02 

0.92 

0.01 

0.90 

0.01 

0.79 

0.01 

0.68 

0.01 

Experiment 2 

Human ISI 30 
2.20

0.15 

2.32

0.15 

2.02

0.14 

1.45

0.12 

0.17

0.02 

0.16

0.02 

0.20 

0.02 

0.29

0.02 

0.78

0.04 

0.82

0.03 

0.71

0.04 

0.52

0.04 

Model 
2.04 

0.07 

2.48 

0.07 

1.97 

0.05 

1.37 

0.05 

0.18 

0.01 

0.11 

0.01 

0.17 

0.01 

0.26 

0.02 

0.92 

0.01 

0.90 

0.01 

0.79 

0.01 

0.68 

0.01 

Model V1 
1.37 

0.04 

1.78 

0.04 

1.53 

0.05 

0.65 

0.04 

0.26 

0.01 

0.19 

0.01 

0.23

0.01 

0.38 

0.01 

0.85 

0.01 

0.83 

0.01 

0.78 

0.01 

0.55 

0.01 

Textons 
0.84 

0.04 

0.58 

0.04 

0.69 

0.04 

0.35 

0.04 

0.34 

0.01 

0.39 

0.01 

0.37 

0.01 

0.43 

0.01 

0.72 

0.01 

0.62 

0.01 

0.67 

0.01 

0.62 

0.01 

Global Features 
1.43

0.05 

1.73

0.04 

1.47

0.03 

0.74

0.05 

0.25

0.01 

0.20

0.01 

0.23

0.01 

0.36

0.01 

0.84

0.01 

0.82

0.01 

0.75

0.01 

0.61

0.01 

Table 5.3: Summary of accuracy measures for human observers and the model (continue on next
page).
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Experiment 3 

Human 0
o

2.28

0.22 

2.39

0.21 

2.13

0.20 

1.71

0.15 

0.15

0.02 

0.15

0.03 

0.17

0.02 

0.25

0.02 

0.88

0.02 

0.91

0.02 

0.83

0.03 

0.60

0.04 

Human 90
o

2.15

0.24 

2.13

0.18 

1.75

0.19 

1.13

0.12 

0.17

0.03 

0.17

0.02 

0.22

0.02 

0.34

0.03 

0.85

0.30 

0.86

0.03 

0.73

0.05 

0.44

0.05 

Human 180
o

1.95

0.19 

2.01

0.19 

1.96

0.18 

1.28

0.16 

0.19

0.02 

0.18

0.03 

0.19

0.22 

0.31

0.02 

0.82

0.03 

0.83

0.03 

0.74

0.04 

0.51

0.03 

Model 0
o

2.05 

0.11 

2.35 

0.09 

1.94 

0.07 

1.44 

0.05 

0.20 

0.01 

0.13 

0.01 

0.17 

0.01 

0.24 

0.01 

0.93 

0.01 

0.87 

0.01 

0.80 

0.01 

0.74 

0.02 

Model 90
o

2.09 

0.11 

2.12 

0.10 

1.34 

0.05 

0.99 

0.06 

0.19 

0.01 

0.16 

0.01 

0.26 

0.01 

0.32 

0.01 

0.92

0.01 

0.84 

0.02 

0.72 

0.01 

0.62 

0.02 

Model 180
o

1.99 

0.11 

2.07 

0.11 

1.64 

0.08 

1.25 

0.05 

0.20 

0.01 

0.16 

0.01 

0.21 

0.01 

0.27 

0.01 

0.92 

0.01 

0.85 

0.02 

0.72 

0.02 

0.69 

0.02 

 

Table 5.4: Summary of accuracy measures for human observers and the model (continue from
previous page).



Chapter 6

Discussion

A Summary

In this thesis, we have developed a quantitative model of the feedforward pathway of the

ventral stream in visual cortex – from cortical area V1 to V2 to V4 to IT and PFC. The

model is consistent with a general theory of visual processing that extends the hierarchical

model of [Hubel and Wiesel, 1959] from primary to extrastriate visual areas and attempts

to explain the first few hundred milliseconds of visual processing.

One of the key property of the model is the learning of a generic dictionary of shape-

components from V2 to IT, which provides an invariant representation to task-specific cat-

egorization circuits in higher brain areas. This vocabulary of shape-tuned units is learned

in an unsupervised manner from natural images, and constitutes a large and redundant

set of image features with different complexities and invariances.

The quantitative nature of the model has allowed us to directly compare properties of

the model against experimental observations at three different scales. In Chapter 3, we

compared the model against electrophysiological recordings at different levels along the

ventral visual stream in the macaque visual system. We have shown that the model is con-

sistent with data from V1, V4 and IT. In Chapter 4 we showed that not only can the model

duplicate the tuning properties of neurons in various brain areas when probed with artifi-

cial stimuli (like the ones typically used in physiology), but it can also handle the recogni-

tion of objects in the real-world, to the extent of competing with the best computer vision

systems. In Chapter 5 we compared directly the performance of the model and the per-

formance of human observers in a rapid animal vs. non-animal recognition task. Results
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indicate that the model can predict well not only the level and the pattern of performance

of human observers but also the level of difficulty of individual images. Taken together,

the evidence presented shows that we may have the skeleton of a successful theory of

“immediate recognition” in visual cortex.

B Open Questions

The model certainly does not account for all possible visual phenomena and illusions. At

best, the theory is just a skeleton still missing many important aspects. Below is an incom-

plete list of the most obvious open questions.

B.1 The Architecture

How strict is the hierarchy and how precisely does it map into cells of different visual

areas? For instance, are cells corresponding to S2 units in V2 and C2 units in V4 or are

some cells corresponding to S2 units already in V1? The theory is rather open about these

possibilities: the mapping of Fig. 2-1 is just an educated guess. However, because of the

increasing arborization of cells and the number of boutons from V1 to PFC [Elston, 2003],

the number of subunits to the cells should increase and thus their potential size and com-

plexity. In addition, C units should show more invariance from the bottom to the top of

the hierarchy.

What is the nature of the cortical and subcortical connections (both feedforward and

feedback) of the main areas of the ventral visual stream that are involved in the model?

Such analysis would help improve the architecture of the model by better constraining

some of the parameters such as the size of the dictionary of shape-components or the num-

ber of inputs to units in different layers. This would also help refine and extend the existing

literature on the organization of visual cortex [Felleman and van Essen, 1991]. With the re-

cent apparition of higher resolution tracers (e.g., PHA-L, byocytin, DBA), visualization has

greatly improved and it is now possible to go beyond a general layout of interconnected

structures and start addressing the finer organization of connections. For instance, recent

studies characterized the precise morphology and microstructure of terminal arbors and

boutons [see Rockland, 2002]. Fine-scale quantitative characterization of the major brain
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areas involved in the model is already partly available: this includes the major feedfor-

ward routes, i.e., from V1 to V2 [Rockland and Virga, 1990; Girard et al., 2001], V2 to V4

[Gattass et al., 1997], PIT to AIT [Saleem et al., 1993; Steele and Weller, 1995], AIT to STS

[Saleem et al., 1996], as well as the feedback connections from V4 and PIT [Rockland et al.,

1994; Felleman et al., 1997], and the bypass routes (i.e., V1 to V4 and V2 to PIT [Nakamura

et al., 1993]). An analysis should be performed that involve: (1) the likely number of neu-

ron types involved in the first few hundred milliseconds of visual processing and (2) an

estimate on the number of afferent inputs for each unit type in the model.

B.2 Learning and Plasticity

What are the precise biophysical mechanisms for the learning rule described in Chap-

ter 2 and how can invariances be learned within the same framework? Possible synap-

tic mechanisms for learning should be described in biophysical details. As suggested in

Chapter 2 there should be at least three different synaptic rules: 1) for learning the TUNING

of the units at the S level by detecting correlations between subunits at the same time; 2)

for learning the invariance to position and scale at the C level by detecting correlations

between subunits across time and 3) for training the task-specific circuits (probably from

IT to PFC) in a supervised manner.

Is learning in areas below IT purely unsupervised and developmental-like as assumed

in Chapter 2? Or is there task- and/or object-specific learning in adults occurring below IT

in V4, V2 or even V1.

B.3 Performance on Natural Images

Have we reached the limit of what a/this feedforward architecture can achieve in terms

of performance? In other words, is the somewhat better performance of humans on the

animal vs. non-animal categorization task over the model for SOAs longer than 80 ms (see

Chapter 5) due to feedback effects mediated by the back-projections or is it that the model

still need to be improved to attain human performance in the absence of a mask? There

could be several directions to follow in order to try to improve the model performance.

One possibility would involve experimenting with the size of the dictionary of shape-

components (that could be further reduced with feature selection techniques for instance).
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Another possibility would involve adding intermediate layers to the existing ones.

Are feedback loops always desirable? Is the performance on a specific task guaranteed

to always increase when subjects are given more time? Or are there tasks for which block-

ing the effect of back-projections with rapid masked visual presentation does increase the

level of performance compared to longer presentation times?

C Future Extensions

C.1 The Ventral Pathway

Learning the tuning of the S1 units. In the present implementation of the model the

tuning of the simple cells in V1 is hardwired. It is likely that it could be determined through

the same passive learning mechanisms postulated for the S2, S2b and S3 units (possibly in

V4 and PIT), possibly with a slower time scale and constrained to LGN center-surround

subunits. We would expect the automatic learning from natural images mostly of oriented

receptive fields but also of more complex ones, including end-stopping units (as reported

for instance in [DeAngelis et al., 1992] in layer 6 of V1).

Color and stereo mechanisms from V1 to IT should be included. The present implemen-

tation deals with gray level images. This fits well with the fact that color information does

not seem to impact performance in rapid categorization tasks Delorme et al. [2000]. More

complex phenomena involving color such as color constancy and integration of color in

visual perception should also be explained. Stereo (along with motion) cues could poten-

tially play a role in unsupervised learning by helping segmenting between the object and

the background.

C.2 The Dorsal Pathway

The original model, formerly known as HMAX, was extended to deal with recognition of

biological motion and actions [Giese and Poggio, 2003]. Initial work has been done to

extend the present theory in the same way. For instance, in [Sigala et al., 2005], we have

shown that the addition of a developmental-like learning stage in intermediate stages of a

model of the dorsal stream [Giese and Poggio, 2003] also lead to a drastic improvement in
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terms of recognition performance. Interestingly the corresponding learning rule selected

motion features that are critical for human observers to perform the task [see Casile and

Giese, 2005]. Such extension is important because the same S4 units (AIT cells) that we

discussed here as supporting recognition of static images are likely to be also part of a

network of reciprocal, lateral, local excitatory connections (learned from passive visual

experience) and more global inhibition that endows them with sequence selectivity [see

Sakai and Miyashita, 1991] and predictivity [Perrett, pers. comm.].

C.3 Including Back-Projections

The most critical extension of the theory has to do with the extensive back-projections in

visual cortex which need to be taken into account in any complete theory of visual cortex.

In the future, we will have to extend the architecture of the model by including back-

projections and assigning meaningful functions to them. Our working hypothesis is that

a) difficult recognition tasks, as object categorization in complex natural images, can be

done within single “snapshots” (e.g., short visual exposures only require the feedforward

architecture of the ventral stream), but b) there are recognition tasks (or levels of perfor-

mance) that need time: such tasks probably require recursions of predictions and verifica-

tions (possibly involving eye or attentional “fixations”) and the associated engagement of

the back-projection pathways.

Beyond the Feedforward Sweep: Attention, Prediction and Verification

Attentional mechanisms. There is a number of ideas about the role of back-projections.

Back-projections may underlie attentional fixations and zooms-in that may be important in

improving performance by focusing on specific spots of the image at the relevant scale and

position (see [Kanwisher and Wojciulik, 2000] for a review). In this view, one may try to

extend the model to perform visual searches and other attentionally demanding processes

which are often guided from the top down when a specific task is given [Wolfe et al.,

2004] (i.e., account for eye movements and shifts of attention beyond the first 150 millisec-

onds). Indeed we have recently developed a computational model [Walther et al., 2005],

in which V4-like S2 features are shared between object detection and top-down attention

such that by a cascade of feedback connections (from PFC to IT and from IT to V4), top-

down processes can re-use these same features to bias attention to locations with higher
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probability of containing the target object. We showed that the model could perform visual

search of faces in natural scenes.

A closely related proposal accounts for receptive field dynamics, such as shrinkage

and extension. In this possible extension, the C2 pooling range (i.e., the number of S2 units

over which the max is taken to compute a C2 response) is a dynamic variable controlled

by feedback connections from IT neurons. This could provide a mechanism for computing

the approximate object location from the shape pathway.

Vision with scrutiny. The basic idea – which is not new and more or less accepted in

these general terms – is that one key role of back-projections is to select and modulate spe-

cific connections in early areas in a top-down fashion – in addition to manage and control

learning processes. This highly speculative framework fits best with the point of view de-

scribed by [Hochstein and Ahissar, 2002]. Its emphasis is thus somewhat different with

respect to ideas related to prediction-verification recursions – an approach known in AI

as “hypothesis-verification” (see among others, [Hawkins and Blakeslee, 2002; Mumford,

1992; Rao and Ballard, 1999]). Hochstein & Ahissar suggested that explicit vision advances

in reverse hierarchical direction, starting with “vision at a glance” (corresponding to our

“immediate recognition”) at the top of the cortical hierarchy and returning downward as

needed in a “vision with scrutiny” mode in which reverse hierarchy routines focus atten-

tion to specific, active, low-level units. Of course, there is a large gap between all of these

ideas and a quantitative theory of the back-projections such as the one described in this

paper for the feedforward path in the ventral stream.

A conceptual framework that tries to make sense of the above set of ideas is the follow-

ing. A program running in PFC decides, depending on the initial feedforward categoriza-

tion, the next question to ask in order to resolve ambiguity or improve accuracy. Typically,

answering this question involves “zooming in” on a particular subregion of the image at

the appropriate level and using appropriate units (for instance at the C1 level) and calling

a specific classifier – out of a repertoire – to provide the answer. This framework involves

a flavor of the “20 questions” game and the use of “reverse hierarchy routines” which

control access to lower level units.

We have performed a preliminary experiment that suggests that such approach may

help improve performance in the animal vs. non-animal categorization task described in
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Figure 6-1: An illustration of the “focused” classifier. A first hypothesis about the approximate
scale and position of the animal is generated by higher areas during the first feedforward sweep.
Back-projections are then used to “zooming in” on a particular subregion of the image at the appro-
priate level and using appropriate units (for instance at the C1 level) and calling a specific classifier
– out of a repertoire – to provide the answer.

Chapter 5. Fig. 6-1 illustrates the principle: A small window is extracted around the animal

and the C1 units in the corresponding “window of attention” or “‘spotlight” [Eriksen and

Eriksen, 1974] is passed to a classifier trained on an animal vs. non-animal categorization

task. Such “focused” classifier does indeed achieve a higher level of performance: On the

far-body condition (see Chapter 5) we found an increase in d′ from ∼ 1.4 to ∼ 1.8 (thus

reaching the level of human observers in longer SOAs).1

Such focused classifier is related to a model for translation (and scale) invariant object

recognition put forward several years ago, in the “shifter” circuit by [Anderson and van

Essen, 1987] and was later studied by [Olshausen et al., 1993] in a system for attention-

based object recognition. A routing circuit, putatively controlled by the pulvinar nucleus

in the thalamus, was supposed to re-normalize retinal images to fit into a standard frame

of reference which was then used for pattern matching to a store of normalized pictures

of objects. Such model could potentially provide an interesting framework to study atten-

tional mechanisms after the key, initial feedforward categorization step.

Mental Imagery

Another possible role for back-projections is mental imagery (see [Buckner and Wheeler,

2001] for a review). Preliminary results suggest that it is possible to create mental images

within the model under the control of back-projections. In this very speculative proposal,

in order to create a mental image of a particular object, e.g., a dog, a vector of neural activity
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X is being synthesized in one of the model layers such that, from the set of all object units2

in higher brain areas (e.g., a classifier in PFC or a watch unit in the precuneus in the medial

parietal area [Fletcher et al., 1995]) only the watch unit will be active. This is illustrated in

Fig. 6-2.

Our initial proposal is simple and relies on a stochastic gradient approach. That is, to

find a vector of neural activity X that will cause the right classifier to fire in a higher-order

areas, a small perturbation or synaptic noise ε is added to the vector of neural activity X.

That is the vector of neural activity is modified such that

X′ ← X + ε.

As a result of this change in the vector of neural activity which is propagated through the

hierarchy all the way to the top, the activity of the classification units will also change. An

increase in the firing of the target classifier will cause the update to be consolidated:

X′ = X + ε

else an update in the opposite direction is taken:

X′ = X− ε.

Also note that the update only relies on a global feedback signal and could thus be easily

controlled through diffuse back-projections.

In what stage of the model should this neural activity X be synthesized? Intuitively,

it makes sense that the higher the stage, the less detailed the synthesized image is. For

instance, a mental image produced directly in V4 should contain finer information than

a mental image produced in AIT. Conversely the lower the stage is (i.e., the further away

from the classification unit), the harder it should be to generate the desired mental image

(i.e., for the algorithm to converge) due to the non-linearities at each stage of the model.

This is illustrated in Table 6.1. We performed two types of simulations in which X is

generated at the level of the classification units in cond 1 and at the level of the S4 units

that correspond to the view-tuned units in AIT in cond 2 (see Fig. 6-2). We ran a small

experiment using a subset of 5 of the 101 objects from the CalTech-101 object dataset.
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Airplane WatchMoto. Faces Leopards

classification unit

 (PFC / medial 

parietal areas)

S4 units

(AIT)

C2b units

(PIT / V4)

X?

cond 2

X?

cond 1

Figure 6-2: A simple model of mental imagery: The assumption is that, for the model to image an
object, say a watch the watch classifier and only the watch classifier has to be active. This is done
by synthesizing some neural activity in lower model layers (e.g., as an input to the classification
units (cond 1) or as input to the S4 units (cond 2).

cond 1 cond 2

Input to the classification units Input to the S4 units (AIT)
mean s.e.m. mean s.e.m

Faces 6 1 77 4
Leopards 4 0 105 4

Motorbikes 4 0 36 3
airplanes 6 1 48 4

watch 4 0 58 5

Table 6.1: Mental imagery in the model: Number of feedback loops needed for a mental image
to be generated. Comparison between re-activating units at the level of the classification units in
higher areas and re-activating units at the level of the S4 units in AIT. The mean and standard error
(s.e.m) were calculated based on 10 runs with random initializations.

In both cases, we found that the algorithm converged, i.e., the right classification unit

became active. As expected, the number of feedback loops was much smaller in the cond 1

where the activity was generated at the level of AIT than in cond 2 where the neural activ-

ity was synthesized lower in PIT/V4 (see Table 6.1). This suggests that creating an image

in higher areas should be much faster than in lower areas. We also found that, the algo-

rithm tended to produce a pattern of activity such that the activity of the units that are not

selective for the target object is reduced. This seems consistent with a study by O’Craven

& Kanwisher [O’Craven et al., 1999] that showed that mental imagery of a particular target
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object is associated with the subsequent activity of cortical regions selective for this target

object. They found that an activation of a cortical region selective for faces (the fusiform

face area [Kanwisher et al., 1997] which is likely to correspond to the S4 units that are

tuned to particular face examples in our experiment) when subjects had to create a mental

image of a face (compared with imaging places). Conversely they also found a selective

activation in the region of the parahippocampal place area [Epstein and Kanwisher, 1998]

(that would correspond to S4 units tuned to places in our experiment) during imagination

of places vs. faces.

D Predictions

Rapid animal vs. non-animal categorization by reading-out from IT: In Chapter 5 we

compared the model to human observers on a rapid animal vs. non-animal categorization

task. We found that for a stimulus asynchrony onset SOA of 50 ms, the model could

actually predict the level of performance of the human observers very well. To perform

the animal classification task the model relies on a linear classifier (probably in PFC) that

“looks” at the activity of a few hundred neurons in the S4 layer corresponding to the view-

tuned example-based units from IT. This scheme was motivated by an early proposal by

Poggio and Edelman [1990] to explain view-invariant recognition and was closely related

to Radial Basis Function (RBF) networks [Poggio and Girosi, 1990]. Interestingly a recent

study [Hung et al., 2005] showed that object category can be read-out by a linear classifier

from the activity of a few hundreds IT neurons while the monkey is passively viewing

images.

A clear prediction of the model is that read-out from “IT” for objects in clutter is possible:

the simulations on the animal vs. non-animal categorization task are with complex natural

images with significant clutter. Performance on other databases involving clutter is also

very good (see Chapter 4). In particular, we find that the presence of one object can be

detected even in the presence of other objects [see Serre et al., 2005a].

Tasks that do require back-projections: As suggested by the experiment The model

should fail to perform attention demanding tasks, see [Li et al., 2002] As stated above,

one of the main assumptions of the current model is the feed-forward architecture. This

suggests that the model may not perform well in situations that require multiple fixations,
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eye movements and feedback mechanisms. Recent psychophysical work suggests that per-

formance on dual tasks can provide a diagnostic tool for characterizing tasks that do or do

not involve attention [Li et al., 2002]. Can the model perform these dual tasks when psy-

chophysics suggests that attention is or is not required? Are back-projections and feedback

required?

E Beyond Vision: A Universal Scheme?

Are the model and the principles described in this thesis applicable to other modalities?

There are several observations that suggest that there may be a chance that at least some

of the ideas described here may generalize to other sensory areas.

For instance, at least within the visual system, it seems that a similar scheme could

be generalized to other substances (e.g., motion, color, binocular disparity). As suggested

by [Adelson and Bergen, 1991] the task of the visual system is to measure the state of the

luminous environment or more precisely local changes along various directions in the vi-

sual environment. This is illustrated in Fig. 6-3 (reproduced from [Adelson and Bergen,

1991]). For instance, the orientated S1 units in the model extract useful information about

local changes in image intensity along particular X − Y directions. Similar oriented fil-

ters in the space and time domain would constitute units that are sensitive for particular

directions of motions. Indeed similar units have been used to model motion-sensitive V1

cells in a model of biological motion recognition in the dorsal pathway [Giese and Poggio,

2003]. We have recently extended this model to include an unsupervised developmental-

like learning stage similar to the one described in Chapter 2. Not only did the performance

of the resulting model increased significantly compared to the original model but it was

also showed to learn motion-features that are also used by human observers [Casile and

Giese, 2005]. As suggested by [Adelson and Bergen, 1991] and illustrated in Fig. 6-3, it

would be very easy to extend the scheme to other substances such as color, disparity, etc .

Regarding other sensory modalities, there is a good chance that some of the principles

and part of the architecture described in Fig. 2-1 may account also for some of the tuning

properties of cells in auditory cortex [T. Ezzat, pers. comm.]. For instance, cortical rewiring

experiments have demonstrated that cells in auditory thalamus and cortex from animals in

which retinal projections were redirected to the auditory thalamus are visually responsive
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Figure 6-3: The same S1-type (a,b,c) of receptive field structures can produce different measure-
ments when placed along different visual directions (reproduced from [Adelson and Bergen, 1991]).
x, y, z correspond to coordinates in space, λ to the wavelength of the light and Vx, Vy , and Vz to
viewpoint positions.

f f f

t t t

Figure 6-4: S1 units in the auditory system [T. Ezzat, pers. comm.].
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and have receptive field properties that are typical of cells in visual cortex. Additionally it

has been shown that this cross-modal projection and its representation in auditory cortex

can mediate visual behavior [von Melchner et al., 2000] (see [Newton and Sur, 2004] for

a recent review). This may suggest that some of the functional principles may be shared

between visual and auditory cortex and that the main differences emerge from differences

in the nature of their inputs. Indeed a recent study [Chi et al., 2005] already suggested that

oriented receptive field structures of the S1-type may extend to auditory cortex. This is

illustrated in Fig. 6-4.

Finally, in a recent review, [Poggio and Bizzi, 2004] suggested that the motor and vi-

sual cortex may share some of the same strategies. In particular, the Gaussian-like TUNING

operation Eq. 1.2 may be key in both motor and visual cortex: For instance, some twenty

years ago, [Georgopoulos et al., 1982] found neurons that are broadly directionally tuned

for arm movements, i.e., their frequency of discharge is a function of the direction of move-

ment, the discharge being strongest along one preferred direction resulting in a directional

bell-shaped tuning curve. It has also been reported that in the motor areas of the frontal

lobe, neurons with similar preferred direction are interleaved with mini-columns having

nearly orthogonal preferred directions [Amirikian and Georgopoulos, 2003] and very sim-

ilar to the ones described in sensory areas (e.g., visual cortex [see Hubel and Wiesel, 1977],

the somato-sensory cortex [Mountcastle, 1957] and the auditory cortex [Merzenich and

Brugge, 1973]).

Notes

1Another related proposal includes the model of contextual object priming by [Oliva

et al., 2003].

2In the present version of the model, we have one classification unit for each object class

to be recognized. For instance, to perform the experiment on the CalTech-101 in Chapter 4,

the model contained 101 classification units in PFC.
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Appendix A

Detailed Model Implementation and

Parameters

We here provide a detailed description of the model implementation and of the parameter

values. The complete model, corresponding to Fig. 2-1 and described in Chapter 2, which

was used in most simulations in Chapter 4 and in Chapter 5), is described below.

The comparison between the model and the benchmark AI systems was performed on

a subcomponent of the model which corresponds to the route going from V2 to PIT by-

passing V4 (light blue arrows in Fig. 2-1, i.e., layers S1 → C1 → S2b → C2b → PFC classifier,

see [Serre and Riesenhuber, 2004; Serre et al., 2005b, 2006b]). This was shown to give a good

compromise between speed and accuracy. Matlab code for this model subcomponent can

be found at http://cbcl.mit.edu/software-datasets/standardmodel /index.

html .

A Model Architecture and Implementation

There are two types of functional layers in the model: the S layers which are composed of

simple units are interleaved with C layers which are composed of complex units.

Simple units in the Sk layer pool over afferent units from a topologically related local

neighborhood in the previous Ck−1 layer with different selectivities. As a result, the com-

plexity of the preferred stimulus of units increases from layer Ck−1 to Sk. The pooling

operation at the S level is a Gaussian-like tuning function. That is, the response y of a sim-
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ple unit, receiving the pattern of synaptic inputs
(

x1, . . . , xnSk

)

from the previous layer

is given by:

y = exp



−
1

2σ2

nSk
∑

j=1

(wj − xj)
2



, (A.1)

where σ defines the sharpness of the TUNING around the preferred stimulus of the unit

corresponding to the weight vector w = (w1, . . . wnSk
). That is, the response of the unit is

maximal (y = 1) when the current pattern of input x matches exactly the synaptic weight

vector w and decreases with a bell-shaped tuning profile as the pattern of input becomes

more dissimilar.1

Complex units in the Ck layer pool over afferent units from the previous Sk layer with

the same selectivity but at slightly different positions and scales to increase the tolerance

to 2D transformations from layer Sk to Ck. The pooling operation at the complex C level

is a MAX operation. That is, the response y of a complex unit corresponds to the response

of the strongest of its afferents
(

x1, . . . , xnCk

)

from the previous Sk layer. An idealized

mathematical description of the complex unit operation is given by:

y = max
j=1... nCk

xj. (A.2)

A complete description of the two operations, a summary of the evidence as well as

plausible biophysical circuits to implement them can be found in [Serre et al., 2005a, Sec-

tion 5, pp. 53-59].

Functional organization: Layers in the model are organized in feature maps which may

be thought of as columns or clusters of units with the same selectivity (or preferred stimulus)

but with receptive fields at slightly different scales and positions (see Fig. 2-6). Within

one feature map all units share the same selectivity, i.e., synaptic weight vector w which is

learned from natural images (see Chapter 2).

There are several parameters governing the organization of individual layers: KX is

the number of feature maps in layer X. Units in layer X receive their inputs from a topo-

logically related ∆NX × ∆NX × ∆SX , grid of possible afferent units from the previous

layer where ∆NX defines a range of positions and ∆SX a range of scales.
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Simple units pool over afferent units at the same scale, i.e., ∆SSk
contains only a single

scale element. Also note that in the current model implementation, while complex units

pool over all possible afferents such that each unit in layer Ck receives nCk
= ∆NS

Ck
×

∆NS
Ck
×∆SCk

, simple units receive only a subset of the possible afferent units (selected at

random) such that nSk
< ∆NSk

×∆NSk
(see Table A.1 for parameter values).

Finally, there is a downsampling stage from Sk to Ck stage. While S units are computed

at all possible locations, C units are only computed every εCk
possible locations. Note that

there is a high degree of overlap between units in all stages (to guarantee good invariance

to translation). The number of feature maps is conserved from Sk to Ck stage, i.e., KSk
=

KCk
. The value of all parameters is summarized in Table A.1.

S1 and C1 stages: The input to the model is a still2 gray-value image (256× 256 ∼ 7o× 7o

of visual angle) which is first analyzed by a multi-dimensional array of simple S1 units

which correspond to the classical V1 simple cells of Hubel & Wiesel. The population of S1

units consists in 96 types of units, i.e., 2 phases× 4 orientations× 17 sizes (or equivalently

peak spatial frequencies). Fig. 2-2 shows the different weight vectors corresponding to the

different types of S1 units (only one phase shown). Mathematically the weight vector w of

the S1 units take the form of a Gabor function [Gabor, 1946], which have been shown to

provide a good model of simple cell receptive fields [Jones and Palmer, 1987] and can be

described by the following equation:

F (u1, u2) = exp

(

−
(û1

2 + γ2û2
2)

2σ2

)

× cos

(

2π

λ
û1

)

, s.t. (A.3)

û1 = u1 cos θ + u2 sin θ and (A.4)

û2 = −u1 sin θ + u2 cos θ, (A.5)

The five parameters, i.e., orientation θ, aspect ratio γ, effective width σ, phase φ and

wavelength λ determine the properties of the spatial receptive field of the units. The tuning

of simple cells in cortex varies substantially along these dimensions. We consider four

orientations (θ = 0◦ , 45◦ , 90◦ , and 135◦ ). This is an over-simplification but this was

previously shown to be sufficient to provide rotation and size invariance at the S4 level

in good agreement with recordings from AIT Riesenhuber and Poggio [1999a]. φ was
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set to 0◦ while different phases are crudely approximated by centering receptive fields

at all locations. In order to obtain receptive field sizes consistent with values reported

for parafoveal simple cells Schiller et al. [1976e], we considered 17 filters sizes from 7 × 7

(0.2◦ visual angle) to 39× 39 (1.1◦ visual angle) obtained by steps of two pixels.

When fixing the values of the remaining 3 parameters (γ, λ and σ), we tried to account

for general cortical cell properties, that is:

1. The peak frequency selectivity of cortical cells tends to be negatively correlated with

the sizes of the receptive fields Schiller et al. [1976d]

2. The spatial frequency selectivity bandwidth of cortical cells tends to be positively

correlated with the sizes of the receptive fieldsSchiller et al. [1976d]

3. The orientation bandwidth of cortical cells tends to be positively correlated with the

sizes of the receptive fields Schiller et al. [1976c].

We empirically found that one way to account for all three properties is to include

fewer cycles in the receptive fields of the units as their sizes (RF size) increase. We found

that the two following (ad hoc) formulas gave good agreement with the tuning properties

of cortical cells:

σ = 0.0036 ∗ RF size2 + 0.35 ∗ RF size + 0.18 (A.6)

λ =
σ

0.8
(A.7)

For all cells with a given set of parameters (λ0, σ0) to share similar tuning properties at

all orientations, we applied a circular mask to the receptive field of the S1 units. Cropping

Gabor filters to a smaller size than their effective length and width, we found that the

aspect ratio γ had only a limited effect on the cells tuning properties and was fixed to 0.3

for all filters.

The next C1 level corresponds to striate complex cells [Hubel and Wiesel, 1959]. Each

of the complex C1 units receives the outputs of a group of simple S1 units with the same

preferred orientation (and two opposite phases) but at slightly different positions and sizes

(or peak frequencies). The result of the pooling over positions is that C1 units become

insensitive to the location of the stimulus within their receptive fields, which is a hallmark

of the complex cells [Hubel and Wiesel, 1959]. As a result, the size of the receptive fields
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increase from the S1 to the C1 stage (from 0.2o − 1.0o to 0.4o − 2.0o). Similarly the effect

of the pooling over scales is a broadening of the frequency bandwidth from S1 to C1 units

also in agreement with physiology [Hubel and Wiesel, 1968; Schiller et al., 1976e; DeValois

et al., 1982a].

The parameters of the Gabor filters (see Eq. A.3) were adjusted so that the tuning prop-

erties of the corresponding S1 units match closely those of V1 parafoveal simple cells [Serre

et al., 2004b]. Similarly the pooling parameters at the next stage were adjusted so that the

tuning and invariance properties of the corresponding C1 units match closely those of V1

parafoveal complex cells.3 The complete parameter set used to generate the population of

S1 units is given in Table A.1.

S2 and C2 stages: At the S2 level, units pool the activities of nS2
= 10 retinotopically or-

ganized complex C1 units at different preferred orientations over a ∆NS2
×∆NS2

= 3× 3

neighborhood of C1 units via a TUNING operation. As a result, the complexity of the pre-

ferred stimuli is increased: At the C1 level units are selective for single bars at a particular

orientation, whereas at the S2 level, units become selective to more complex patterns –

such as the combination of oriented bars to form contours or boundary-conformations.

Receptive field sizes at the S2 level range between 0.6o − 2.4o.

In the next C2 stage, units pool over S2 units that are tuned to the same preferred

stimulus (they correspond to the same combination of C1 units and therefore share the

same weight vector w) but at slightly different positions and scales. C2 units are therefore

selective for the same stimulus as their afferents S2 units. Yet they are less sensitive to the

position and scale of the stimulus within their receptive field. Receptive field sizes at the

C2 level range between 1.1o − 3.0o.

We found that the tuning of model C2 units (and their invariance properties) to dif-

ferent standard stimuli such as Cartesian and non-Cartesian gratings, two-bar stimuli and

boundary conformation stimuli is compatible with data from V4 [Gallant et al., 1996; Pa-

supathy and Connor, 2001; Reynolds et al., 1999], see Chapter 3.

S3 and C3 stages: Beyond the S2 and C2 stages the same process is iterated once more

to increase the complexity of the preferred stimulus at the S3 level (possibly related to

Tanaka’s feature columns in TEO), where the response of nS3
= 100 C2 units with different
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selectivities are combined with a TUNING operation to yield even more complex selectivi-

ties. In the next stage (possibly overlapping between TEO and TE), the complex C3 units,

obtained by pooling S3 units with the same selectivity at neighboring positions and scales,

are also selective to moderately complex features as the S3 units, but with a larger range of

invariance. The S3 and C3 layers provide a representation based on broadly tuned shape

components.

The pooling parameters of the C3 units (see Table A.1) were adjusted so that, at the next

stage, units in the S4 layer exhibit tuning and invariance properties similar to those of the

so-called view-tuned cells of AIT [Logothetis et al., 1995] (see [Serre et al., 2004b, 2005a]).

The receptive field sizes of the S3 units are about 1.2o − 3.2o while the receptive field sizes

of the C3 and S4 units is about the size of the stimulus (from 4o × 4o to 7o × 7o).

S2b and C2b stages: They may correspond to the bypass routes that have been found in vi-

sual cortex, e.g., direct projections from V2 to TEO [Boussaoud et al., 1990; Nakamura et al.,

1993; Gattass et al., 1997] (bypassing V4) and from V4 to TE (bypassing TEO) [Desimone

et al., 1980; Saleem et al., 1992; Nakamura et al., 1993]. S2b units combine the response of

several retinotopically organized V1-like complex C1 units at different orientations just like

S2 units. Yet their receptive field is larger (2 to 3 times larger) than the receptive fields of

the S2 units. Importantly, the number of afferents to the S2b units is also larger (nS2b
= 100

vs. nS2
= 10), which results in units which are more selective and more “elaborate” than

the S2 units, yet, less tolerant to deformations. The effect of skipping a stage from C1 to S2b

also results at the C2b level in units that are more selective than other units at a similar level

along the hierarchy (C3 units), and at the same time exhibit a smaller range of invariance

to positions and scales. We found that the tuning of the C2b units agree with the read out

data from IT [Hung et al., 2005] (see [Serre et al., 2005a]).

Biophysical implementations of the key computations: The model implementation used

here is agnostic about the implementations of the Gaussian-like tuning and the max-like

operations as well as about the biophysical mechanisms of unsupervised and supervised

learning. For the two key computations we used the idealized operations described in

Eq. A.2 and Eq. A.1. There are plausible local circuits [Serre et al., 2005a] implementing

the two key operations within the time constraints of the experimental data [Perrett et al.,
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S1 parameters

RF size (pixels) 7 & 9 11 & 13 15 & 17 19 & 21 23 & 25 27 & 29 31 & 33 35 & 37 & 39
σ 2.8 & 3.6 4.5 & 5.4 6.3 & 7.3 8.2 & 9.2 10.2 & 11.3 12.3 & 13.4 14.6 & 15.8 17.0 & 18.2 & 19.5
λ 3.5 & 4.6 5.6 & 6.8 7.9 & 9.1 10.3 & 11.5 12.7 & 14.1 15.4 & 16.8 18.2 & 19.7 21.2 & 22.8 & 24.4

θ 00; 450; 900; 1800

num. S1-types KS1
4

C1 parameters

Bands ∆SC1
1 2 3 4 5 6 7 8

grid size ∆N
S

C1
8 10 12 14 16 18 20 22

sampling εC1
3 5 7 8 10 12 13 15

num. C1-types KC1
= KS1

= 4

S2 parameters

grid size ∆NS2
3 × 3 (×4 orientations)

num. afferents nS2
10

num. S2-types KS2
≈ 2000

C2 parameters

Bands ∆SC2
1 & 2 3 & 4 5 & 6 7 & 8

grid size ∆N
S

C2
8 12 16 20

sampling εC2
3 7 10 13

num. C2-types KC2
= KS2

≈ 2000

S3 parameters

grid size ∆NS3
3 × 3 (×KS2

)

num. afferents nS3
100

num. S3-types KS3
≈ 2000

C3 parameters

Bands ∆SC3
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8

grid size ∆N
S

C3
40

num. C3-types KC3
= KS3

≈ 2000

S2b parameters

grid size ∆NS
2b

6× 6; 9 × 9; 12 × 12; 15 × 15 (×4 orientations)

num. afferents nS
2b

100

num. S2b-types KS
2b

≈ 500 for each size≈ 2000 total

C2b parameters

Bands ∆SC
2b

1 & 2 & 3 & 4 & 5 & 6 & 7 & 8

grid size ∆N
S

C
2b

40

num. C2b-types KC
2b

= KS
2b
≈ 500 for each size≈ 2000 total

Table A.1: Summary of all the model parameters.

1992; Hung et al., 2005] based on small local population of spiking neurons firing prob-

abilistically in proportion to the underlying analog value [Smith and Lewicki, 2006] and

on shunting inhibition [Grossberg, 1973]. Other possibilities may involve spike timing in

individual neurons (see [VanRullen et al., 2005] for a recent review).
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B Major Extensions from the Original HMAX model

The architecture sketched in Fig. 2-1 has evolved – as originally planned and from the

interaction with experimental labs – from the original model by [Riesenhuber and Poggio,

1999a]. In particular, new layers have been added (now accounting for V4 and PIT in

separate layers for instance) to improve the mapping between the functional primitives of

the theory and the structural primitives of the ventral stream in the primate visual system.

Below is a list of major changes and differences between this new model implementation

and the original one:

1. S1 and C1 layers: In [Serre and Riesenhuber, 2004] we found that the S1 and C1

units in the original model were too broadly tuned in terms of orientation and spatial

frequency and proposed a new set of units that better capture the tuning properties

of V1 cortical cells. In particular at the S1 level, we replaced Gaussian derivatives

with Gabor filters which we found more suited to fit V1 data. We also modified the

receptive field sizes and tuning properties of both S1 and C1 units.

2. S2 layer: The tuning of the S2 units is now learned from natural images (see Chap-

ter 2). S2 units are more elaborate than the S2 units in the original HMAX (simple

2 × 2 combinations of orientations). The introduction of learning, we believe, has been a

key factor for the model to achieve a high level of performance on the recognition of complex

images (see [Serre et al., 2002, 2005b, 2006b] and Chapter 4).

3. C2 layer: The receptive field size of the C2 units, as well as the range of invariances to

scale and position is now reduced such that C2 units better fit V4 data. See Chapter 3

for details.

4. S3 and C3 layers: These two layers were added only recently and constitute the top-

most layers of the model along with the S2b and C2b units (see Chapter 2 and above).

The tuning of the S3 units is also learned from natural images.

5. S2b and C2b layers: We added these two layers to account for the bypass route (that

projects directly from V1/V2 to PIT, thus bypassing V4 [see Nakamura et al., 1993]).

Interestingly these bypass routes have been shown to provide an excellent compro-

mise (when used alone) between speed and accuracy in computer vision applications

(see [Serre et al., 2005b, 2006b]).
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Notes

1When Eq. A.1 is approximated by a normalized dot-product followed by a sigmoid,

such that:

y =

∑nSk

j=1 wj xp
j

k + (
∑n

j=1 xq
j)

r
,

the weight vector w corresponds to the strength of the synaptic inputs to the Gaussian-

tuned unit.

2The present version of the model deals with one single image at a time as it does not

incorporate mechanisms for motion and the recognition of sequences. A natural exten-

sion to include time may start with a version of the original HMAX model that had the

capability of recognizing image sequences [Giese and Poggio, 2003].

3Unlike in [Riesenhuber and Poggio, 1999a], all the V1 parameters here are derived

exclusively from available V1 data and do not depend as they did in part in [Riesenhuber

and Poggio, 1999a] from the requirement of fitting the benchmark paperclip recognition

experiments [Logothetis et al., 1995]. Thus the fitting of these paperclip data by the model

is even more remarkable than in [Riesenhuber and Poggio, 1999a].

4In the model, both the supervised and unsupervised learning stages are relatively fast.

Yet at run-time, it takes about one minute to classify a single image. A speed up by a factor

of 10 is feasible.
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Appendix B

Additional Comparisons with

Computer Vision Systems

As pointed out in Chapter 2, we only used a subpart of the model for this comparison

(i.e., the bypass route depicted on Fig. 2-1), which contains the path running from S1 →

C1 → S2b → C2b. The C2b unit responses were then passed to a linear classifier (boosting

or SVM). This gave a good compromise between speed and accuracy in this application-

oriented setting with large real-world image databases.

The details of the model implementation are given in Appendix A. We show two appli-

cations of the model to computer vision: Semi-supervised object recognition in clutter, for

which training is performed on unsegmented images (i.e., the object is present in clutter)

and a scene-understanding system. Part of this work appeared in various forms in [Serre

et al., 2004b, 2005b, 2006b].

A Image Datasets

We tested the model on various object categorization tasks for comparison with benchmark

computer vision systems. All datasets used contain images for which the target object is

present or absent.

CalTech-5: We consider five databases from the CalTech vision group1, i.e., frontal-face,

motorcycle, rear-car and airplane datasets from [Fergus et al., 2003], as well as the leaf

dataset from [Weber et al., 2000b] (see Fig. 4-6 for examples). On these datasets, we
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used the same fixed splits as in the corresponding studies whenever applicable and other-

wise generated random splits. All images were rescaled to be 140 pixels in height (width

was rescaled accordingly so that the image aspect ratio was preserved) and converted to

grayscale.

CalTech-101: The CalTech-101 contains 101 object classes plus a background class (see

[Fei-Fei et al., 2004] for details, Fig. 4-1 and Fig. 4-3). All results reported were generated

with 10 random splits. For training, we used 50 negative examples and a variable number

of positive training examples (1, 3, 15, 30 and 40). For testing, in the binary classification

experiments we selected 50 negative examples and as many as 50 positive examples from

the remaining images. In the multi-class experiment, we used as many as 50 examples per

class. All images were rescaled to be 140 pixels in height (width was rescaled accordingly

so that the image aspect ratio was preserved) and converted to grayscale.

MIT-CBCL: This includes a near-frontal (±30◦ ) face dataset [Heisele et al., 2002] and a

multi-view car dataset from [Leung, 2004] (see Fig. 4-7). The face dataset contains about

6,900 positive and 13,700 negative images for training and 427 positive and 5,000 negative

images for testing. The car dataset contains 4,000 positive and 1,600 negative training

examples and 1,700 test examples (both positive and negative). Although the benchmark

algorithms were trained on the full sets and the results reported accordingly, our system

only used a subset of the training sets (500 examples of each class only).

B Results

Comparison with SIFT features: We also compared the C2b features to a system based

on Lowe’s SIFT features [Lowe, 1999]. To perform this comparison at the feature level and

ensure a fair comparison between the two systems, we neglected all position information

recovered by Lowe’s algorithm. It was recently suggested in [Lazebnik et al., 2005] that

structural information does not seem to help improve recognition performance. We se-

lected 1, 000 random reference key-points from the training set. Given a new image, we

measured the minimum distance between all its key-points and the 1, 000 reference key-

points, thus obtaining a feature vector of size 1, 000.2
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Figure B-1: Comparison between a linear classifier that uses the response of the C2b model units as
an input vs. the SIFT features [Lowe, 2004]. (a) Comparison on the CalTech-5 datasets [Fergus et al.,
2003] for different number of features used. (b) Comparison on the CalTech-101 object database for
different numbers of examples available for training.
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Figure B-2: Performance vs. size of the dictionary of C2b units on the CalTech-5 datasets [Fergus
et al., 2003] (a) and on the number of positive examples available for training on sample object
category from the CalTech-101 object dataset (b).
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Fig. B-1 shows a comparison between the performance of the SIFT and the C2b features

(both with gentleBoost but similar results were obtained with a linear SVM). Fig. B-1(a)

shows a comparison on the CalTech-5 for different number of features and Fig. B-1(b) on

the CalTech-101 database for different number of training examples. In both cases the C2b

features outperform the SIFT features significantly. SIFT features excel in the re-detection

of a transformed version of a previously seen example but may lack selectivity for a more

general categorization task at the basic level.

Number of features and training examples: To investigate the contribution of the num-

ber of features on performance, we first created a set of 10, 000 C2b features and then ran-

domly selected subsets of various sizes. The results reported are averaged over 10 inde-

pendent runs. As Fig. B-2(a) shows, while the performance of the system can be improved

with more features (e.g., the whole set of 10, 000 features), reasonable performance can al-

ready be obtained with 50 − 100 features. Interestingly, the number of features needed to

reach the plateau (about 1, 000 − 5, 000 features) is much larger than the number used by

current systems (on the order of 10-100 for [Ullman et al., 2002; Heisele et al., 2002; Torralba

et al., 2004] and 4-8 for constellation approaches [Weber et al., 2000b; Fergus et al., 2003;

Fei-Fei et al., 2004]). This may come from the fact that we only sample the space of features

and do not perform any clustering step like other approaches (including an earlier version

of this system [Serre et al., 2002]), we found it to be sensitive to the choice of parameters

and initializations, leading to poorer results.

We also studied the influence of the number of training examples on the performance

of the system on the CalTech-101. For each object category, we generated different positive

training sets of size 1, 3, 6, 15 and 30 as in [Fei-Fei et al., 2004]. As shown in Fig. B-2(b) the

system achieves error rates comparable to [Fei-Fei et al., 2004] on few training examples

(less than 15) but its performance still improves with more examples (where the system

by Fei-Fei et al. seems to be reaching a plateau). Results with an SVM (not shown) are

similar, although the performance tended to be higher on very few training examples (as

SVM seems to avoid overfitting even for one example). However, since SVM does not select

the relevant features, its performance tends to be lower than gentleBoost as the number of

training examples increases.
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(a) Linear SVM classifier
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(b) GentleBoost classifier

Figure B-3: Overall performance on the CalTech-101 for two types of linear classifiers: (a) SVM and
(b) gentleBoost. Each plot is an histogram of the mean performance of the system across all the 101
different object categories and for different numbers of positive training examples.
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Fig. B-3 shows the performance of the gentleBoost and SVM classifiers used with the

C2b features on all categories and for various number of training examples (each result

is an average of 10 different random splits). Each plot is a single histogram of all 101

scores, obtained using a fixed number of training examples, e.g., with 40 examples, the

gentleBoost-based system gets around 95% ROC area for 42% of the object categories.

Multiclass results on the CalTech-101: Finally, we report results on multi-class classifica-

tion on the CalTech-101. To conduct this experiment we use a small dictionary of just 1, 000

features. The classifier is a multi-class linear SVM that applied the all-pairs method, and is

trained on 102 labels (101 categories plus the background category). We split each category

into a training set of size 15 and a test set containing up to 50 images. Performance is then

averaged across all categories. The performance of the system reaches above 44% correct

classification rate (chance < 1%) when using 15 training examples per class averaged over

10 repetitions (s.t.d of 1.14%). Using only 5 training images per class, the performance

degrades to ∼ 30%.

By enlarging the dictionary of shape-components and computing additional gestalt-

like features (e.g., good-continuity detectors, circularity detectors and symmetry detectors)

within the same framework, Wolf & Bileschi obtained ≈ 51.2% ± 1.2% correct [Wolf et al.,

2006; Bileschi and Wolf, 2006]. Extending our approach, Mutch & Lowe reported 56%

correct by applying a feature selection method on the set of C2b features [Mutch and Lowe,

2006]. Some of the best systems include the system by [Holub et al., 2005b] (≈ 44% correct)

and the system by [Berg et al., 2005] (45% correct).

Scene Understanding with the Model: Recently Bileschi & Wolf applied the model to

the recognition of complex visual scenes. Outdoor images of cities and suburbs were se-

lected as an appropriate domain for the scene-understanding system. A database of nearly

10, 000 high-resolution images has been collected, more than 3, 000 of which have been

hand labeled for 9 object categories. Sample images, their hand labellings, and some em-

pirical results are illustrated in Fig B-4.3

The system is composed of two parts: One subcomponent deals shape-based objects,

the other with texture-based objects. Shape-based objects are those objects for which there

exists a strong part-to-part correspondence between examples, including pedestrians, cars,
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Figure B-4: Sample results by the StreetScene recognition system by Bileschi & Wolf. Top Row:
Sample StreetScenes examples. Middle Row: True hand-labeling; color overlay indicates tex-
ture-based objects and bounding rectangles indicate shape-based objects. Note that pixels may
have multiple labels due to overlapping objects. Bottom Row: Results obtained with the system.

and bicycles. In order to detect shape-based objects, a standard windowing technique is

used. This contrasts with the approach described in Chapter 2, wherein isolated objects in

clutter are detected using scale- and translation-invariant features, rather than testing for

object presence at each position and scale independently. The windowing approach used

in this computer vision system may be thought of as the skeleton of an attentional circuit.4

In conjunction with this windowing approach, we use the C1 units. Since the window

crops away much of the clutter, leaving the potential object nearly centered, the additional

invariance from higher model stages is not necessary. It is important to note that the good

performance of the C1 features is dependent upon training data with accurate descriptions

of the position and scale of the target object.

Texture-based objects, on the other hand, are those objects for which, unlike shape-

based objects, there is no obvious visible inter-object part-wise correspondence. These

objects are better described by their texture rather than the geometric structure of reliably

detectable parts. For the StreetScenes database these currently include buildings, roads,

trees, and skies. The detection of the texture-based objects begins with the segmentation

of the input-imageEdison software [Christoudias et al., 2002]. Segments are assigned labels

by calculating the C2b responses within each segment, and inputting this vector into a

classifier. One classifier is trained for each object-type using examples from the training

database.
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C Summary of All Comparisons with Computer Vision Systems

Table B.1 summarizes several comparisons between the model and other state-of-the-art

computer vision systems. For this comparison, an earlier (simpler) implementation of

the model [Serre et al., 2005b], which corresponds to the bypass route projecting from

S1 → C1 → S2b → C2b, was used. The performance of the full architecture which in-

cludes a richer dictionary of shape components, tends to be significantly higher than the

performance of this simpler (incomplete) implementation. Therefore the results reported

here constitute a lower bound on the system performance. These comparisons are based

on three studies5:

• In [Serre et al., 2005b] we compared the model to the constellation models [Weber

et al., 2000b; Fergus et al., 2003] on five standard publicly available datasets from the

Caltech vision group: Leave (Lea), Car, Face (Fac), Airplane (Air) and Motorcycle

(Mot) as well as two other component-based systems [Heisele et al., 2002; Leung,

2004] on the MIT-CBCL Face (Fac) and Car datasets.

• [Chikkerur and Wolf, 2006] re-implemented the fragment-based system by Ullman

and colleagues [Ullman et al., 2002; Epshtein and Ullman, 2005] for comparison

with the model on five publicly available datasets: the Leave, Face and Motorcycle

datasets from CalTech and the Cow and Face dataset from the Weizmann Institute.

• [Bileschi and Wolf, 2005] re-implemented several systems for comparison with the

model on the MIT-CBCL Street Scene dataset. They re-implemented two object recog-

nition systems [Torralba et al., 2004; Leibe et al., 2004] for comparison on the “shape-

based” object categories, i.e., Bike (Bik), Pedestrian (Ped), and Car as well as two

texture recognition systems [Renninger and Malik, 2004; Carson et al., 1999] for com-

parison on the “texture-based” object categories, i.e., Building (Bui), Tree (Tre), Road

(Roa) and Sky.

In Table B.1, blue indicates that the corresponding study [Serre et al., 2005b] relied on

published results of the benchmark systems on standard datasets. Yellow indicates that

the results for the benchmark systems were based on re-implementations by the authors

of the studies [Bileschi and Wolf, 2005; Chikkerur and Wolf, 2006]. In the study by [Bileschi
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and Wolf, 2005] the two numbers for the model on Bike, Pedestrian and Car correspond to

the performance of the model C2b and C1 units respectively.6

Notes

1The CalTech-5 databases are publicly available at:

http://www.robots.ox.ac.uk/ ˜ vgg/data3.html .

2Lowe recommends using the ratio of the distances between the nearest and the second

closest key-point as a similarity measure. We found instead that the minimum distance

leads to better performance than the ratio.

3This database will soon be available online at:

http://cbcl.mit.edu/software-datasets , [see Serre et al., 2006b] for details.

4While the purely feedforward approach is appropriate for fast decisions of object pres-

ence or absence, it would be impractical for this scene-understanding application as the

locations of individual objects would be lost. The windowing approach, however, requires

the manual segmentation and normalization of the training set of examples.

5Mutch & Lowe also reports favorable comparison in their implementation of the model

[Mutch and Lowe, 2006].

6On these datasets, images are aligned and normalized, and the amount of clutter

is minimal. For such tasks, for which there is no variation of the object in shift and

scale, lower stages of the model (e.g., C1 stage) tend to perform better than higher stages

(e.g., C2b).
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Weizmann CalTech MIT-CBCL 
 

Fac Cow Lea Car Fac Air Mot Fac Car 

Model                                 

[Serre et al, 2005] 

  97.0 99.7 98.2 96.7 98.0 95.9 95.1 

Constellation [Weber et al, 

2000, Fergus et al, 2003] 
  84.0 84.8 96.4 94.0 95.0   

Component-based           

[Heisele et al, 2002] 
       90.4  

[S
er

re
 e

t a
l, 

20
05

] 

Component-based           

[Leung, 2004] 
        75.4 

Model                           

[Serre et al, 2005] 

100.0 92.0 97.9  94.5  96.5   

Fragments                    

[Epshtein & Ullman, 2005] 

98.0 78.7 87.4  66.8  52.6   

[C
hi

kk
er

ur
 &

 W
ol

f, 
 2

00
6]

 

Single template SVM 100.0 77.3 71.6   62.2  65.6   

MIT-CBCL Street Scene Database 

 Bik Ped Car Bui Tre Roa Sky 

Model                                  

[Serre et al, 2005] 

87.8  

84.1 

81.7  

88.8 

89.6  

92.9 

80.3 90.8 88.9 94.7 

Component-based        

[Torralba et al, 2004] 

68.5 79.8 69.9     

Part-based           

[Leibe et al,  2004] 

80.9 85.2 85.9     

Single template SVM 67.8 70.0 85.0     

Blobworld                        

[Carson et al, 1999] 

   85.8 73.1 68.2 

Texton                        

[Renninger & Malik, 2002] 

   69.7 70.4 58.1 65.1 

[B
ile

sc
hi

 &
 W

ol
f, 

20
05

] 

Histogram of edges    63.3 63.7 73.3 68.3 

 

66.1 

Table B.1: Summary of the comparisons performed between the model and other computer vision
systems.
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