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Definition

Hierarchical models of the visual system are neural networks with a layered
topology: In these networks, the receptive fields of units (i.e., the region of the
visual space that units respond to) at one level of the hierarchy are constructed
by combining inputs from units at a lower level. After a few processing stages,
small receptive fields tuned to simple stimuli get combined to form larger re-
ceptive fields tuned to more complex stimuli. Such anatomical and functional
hierarchical architecture is a hallmark of the organization of the visual system.

Since the pioneering work of Hubel and Wiesel (1962), a variety of hier-
archical models have been described from relatively small-scale models of the
primary visual cortex to very large-scale (system-level) models of object and
action recognition, which account for processing in large portions of the vi-
sual field and entire visual streams. The term ‘model of the visual system’ is
generally reserved for architectures that are constrained in some way by the
anatomy and the physiology of the visual system (with various degrees of real-
ism). Convolutional networks are closely related connectionist networks with a
similar architecture that have been used in multiple real-world machine learning
problems including speech and music classification.

Detailed description

The processing of shape information in the ventral stream of the visual cor-
tex follows a series of stages, starting from the retina, through the Lateral
Geniculate Nucleus (LGN) of the thalamus to primary visual cortex (V1) and
extrastriate visual areas, V2, V4 and the inferotemporal (IT) cortex. In turn IT
provides a major source of input to prefrontal cortex (PFC) involved in linking



perception to memory and action (see DiCarlo et al., 2012, for a recent review
but also Limitations section below for further discussion). As one progresses
along the ventral stream visual hierarchy, neurons become selective for increas-
ingly complex stimuli — from simple oriented bars and edges in early visual area
V1 to moderately complex features in intermediate areas (such as combination
of orientations) and complex objects and faces in higher visual areas such as
IT. In parallel to this increase in the complexity of the preferred stimulus, the
invariance properties of neurons also increases with neurons gradually becom-
ing more and more tolerant with respect to the exact position and scale of the
stimulus within their receptive fields. As a result of this increase in invariance
properties, the receptive field size of neurons increases, from about one degree
or less in V1 to several degrees in IT.

Hierarchical models of the visual system have a long history starting with
Marko and Giebel (1970)’s homogeneous multi-layered architecture and later
Fukushima (1980)’s Neocognitron. One of the key principles in the Neocogni-
tron and other modern hierarchical models originates from the pioneering phys-
iological studies and models of Hubel and Wiesel (1962). In these networks, the
receptive fields of units at one level of the hierarchy are constructed by com-
bining inputs from units at a lower level. After a few processing stages, small
receptive fields tuned to simple stimuli get combined to form larger receptive
fields tuned to more complex stimuli.

Several hierarchical models of the ventral stream of the visual system have
been described since the Neocognitron to account for the organization and the
neurophysiology of the ventral stream of the visual cortex. These models can
be coarsely divided into conceptual proposals (Biederman, 1987; Perrett and
Oram, 1993; Hochstein and Ahissar, 2002) and neurobiological models (e.g.,
?Mel, 1997; Riesenhuber and Poggio, 1999; Ullman et al., 2002; Thorpe, 2002;
Amit and Mascaro, 2003; Wersing and Koerner, 2003; Serre et al., 2007; Masque-
lier and Thorpe, 2007; Grossberg et al., 2011a,b; O’Reilly et al., 2013). Similar
hierarchical models have also been proposed to explain motion processing in the
dorsal stream of the visual cortex (e.g., Simoncelli and Heeger, 1998; Grossberg
et al., 1999; Perrone and Thiele, 2002; Giese and Poggio, 2003; Rust et al., 2006;
Jhuang et al., 2007; Pack and Born, 2008; Mineault et al., 2012).

Somewhat independently, convolutional networks and other deep learning
architectures have been developed in computer vision (LeCun et al., 1998).
These neural networks do not mimic the organization of the visual cortex in
detail, but biology is often cited as a source of inspiration. While these models
are not, strictly speaking, models of the visual system, their impressive success
in multiple visual recognition tasks (Krizhevsky et al., 2012), offer supporting
evidence for hierarchical models of the visual system.

Hierarchical models of the primary visual cortex

Hubel and Wiesel (1962) first described two functional classes of cortical cells:
Simple cells respond best to oriented stimuli (e.g, bars, edges, gratings) at one
particular orientation, position and phase (i.e., white bar on a black background



_______________

______

Figure 1: Hubel & Wiesel model. (A) Receptive field (RF) of a simple
cell obtained by selectively pooling over afferent (center-surround) cells aligned
along a preferred axis of orientation (horizontal shown here). (B) At the next
stage, a complex cell RF can be obtained by selectively pooling over afferent
simple cells with the same preferred orientation (horizontal). Shown here is a
complex cell RF obtained by pooling over position to build tolerance to trans-
lation of the preferred stimulus but a more complete model of a complex cell
would also include pooling over simple cells tuned to slightly different spatial
frequency and phases (Rust et al., 2005; Chen et al., 2007). Modified from Hubel
and Wiesel (1962).

or a dark bar on a white background) within their relatively small receptive
fields. Complex cells, on the other hand, while also selective for bars, tend to
have larger receptive fields (about twice as large) and exhibit some tolerance
with respect to the exact position of the stimulus within their receptive fields.
Complex cells are also invariant to contrast reversal, i.e., the same cell responds
to a white bar on a black background or the opposite.

Figure 1 illustrates a plausible neural circuit proposed by Hubel and Wiesel
(1962) to explain the receptive field organization of these two functional classes
of cells. Simple-cell-like receptive fields can be obtained by pooling the activity
of a small set of cells tuned to spots of lights with a center-surround organization
(as observed in ganglion cells in the LGN and layer IV of the striate cortex)
aligned along a preferred axis of orientation (Figure 1A).

Similarly, at the next stage, position tolerance at the complex cell level,
could be obtained by pooling over afferent simple cells (from the level below)
with the same preferred (horizontal) orientation but slightly different positions
(Figure 1B). While the precise circuits underlying the invariance of complex
cells are still debated (Chance et al., 2000), the coarse circuitry and underly-



ing pooling mechanisms postulated by Hubel & Wiesel over fifty years ago are
now relatively well established (Rust et al., 2005; Chen et al., 2007). This has
recently lead to the development of a number of computational models of the
primary visual cortex (Traub et al., 2005; Zhu et al., 2010; Antolik and Bednar,
2011; Bednar, 2012), which account for the processing of one or a few cortical
hypercolumns (see below) at the level of biophysically realistic circuits.

Hierarchical models of the visual system

Hierarchical models of the visual system typically extend these two classes of
simple and complex cells from striate to extrastriate areas and come in many
different forms: They differ in terms of their specific wiring and corresponding
parameterizations as well as the mathematical operations that are implemented.
However, common to all these models is an underlying basic architecture corre-
sponding to multiple stages of processing as shown for the HMAX, a represen-
tative hierarchical model of visual processing (Riesenhuber and Poggio, 1999;
Serre et al., 2007), on Figure 2.

A general wiring diagram of the HMAX and other related hierarchical models
of the visual cortex is shown on Figure 3. Units at stage k + 1 pool selectively
over afferent units from the previous stage k within a local neighborhood (shown
in red). In general, pooling may occur over multiple dimensions of the afferent
units (e.g., position, scale, orientation, etc). Pooling over multiple locations (as
shown in stage k on Figure 3) leads to an increase in the receptive field size of
the units at the next stage (compare the receptive field size of a unit at stage k
shown in yellow with that of a unit at a higher stage k + 1 (shown in red).

For instance, a computational instantiation of the Hubel & Wiesel hierarchi-
cal model of the primary visual cortex corresponds to two processing stages (a
more detailed model would include an additional processing stage corresponding
to center-surround cells — not shown here for simplicity). Simple cells in layer
k = 1 receive their inputs directly from pixel intensities in the previous layer
k = 0 (see yellow receptive field in Figure 3). Complex cells in layer k£ = 2
pool over afferent simple cells at the same orientation over a local neighborhood
(shown is a 3 x 3 neighborhood). These types of circuits have lead to several
models of the primary visual cortex that have focused on explaining in rea-
sonably good biophysical details the tuning properties of individual cells such
as orientation, motion or stereo disparity, (see Landy and Movshon, 1991, for
review).
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Figure 2: Sketch of the Hmax hierarchical model of visual processing:
Acronyms: V1, V2 and V4 correspond to primary, second and fourth visual
areas, PIT and AIT to posterior and anterior inferotemporal areas, respectively
(tentative mapping with areas of the visual cortex shown in color, some areas
of the parietal cortex and dorsal streams not shown). The model relies on
two types of computations: A max-like operation (shown in dash circles) over
similar features at different position and scale to gradually build tolerance to
position and scale and a bell-shaped tuning operation (shown in plain circle) over
multiple features to increase the complexity of the underlying representation.
Since it was originally developed Riesenhuber and Poggio (1999), the model has
been able to explain a number of new experimental data (Serre et al., 2007).
This includes data that were not used to derive or fit model parameters. The
model seems to be qualitatively and quantitatively consistent with (and in some
cases actually predicts) several properties of subpopulations of cells in V1, V4,
IT, and PFC as well as fMRI and psychophysical data (see Serre and Poggio,
2010, for a recent review).
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Figure 3: Hierarchical models of the visual system are characterized by multiple
stages of processing whereby units in one stage (shown as squares) pool the
response of units from the previous stage. Individual stages (also called layers)
contain multiple feature maps organized in terms of both spatial location and
scale. A hypercolumn contains all possible features from all feature maps for
that location. Hence each stage can be thought of as containing hypercolumns
replicated at all positions and scales.

In recent years, because of the increasing amount of computing power avail-
able, the scale of models of visual processing has increased with models now
encompassing large portions of the visual field and entire streams of visual pro-
cessing (see Poggio and Serre, 2013, for a review). Alternating between multiple
layers of simple units and complex units leads to an architecture that is able
to achieves a difficult trade-off between selectivity and invariance: Along the
hierarchy, at each “simple unit” stage, units become tuned to features of in-
creasing complexity (e.g., from single oriented bars, to combinations of oriented
bars to form corners and features of intermediate complexities) by combining
afferents (complex units) with different selectivities (e.g., units tuned to edges at
different orientations). Conversely, at each “complex unit” stage, units become
increasingly invariant to 2D transformations (position and scale) by combin-
ing afferents (simple units) with the same selectivity (e.g., a vertical bar) but
slightly different positions and scales.

While recent work has suggested that simple and complex cells may represent
the ends of a continuum instead of two-discrete classes of neurons (see Ringach
(2004) for a discussion), this dichotomy is probably not critical for hierarchical
models of the visual system. Indeed, some recent models do not distinguish
between simple and complex cell pooling (O’Reilly et al., 2013).



Figure 4: Linear filter model of a simple cell using Gabor functions (see text for
details).

Columnar organization

Units in hierarchical models of the visual cortex are typically organized in
columns and/or feature maps. A hypercolumn (shown in blue on Figure 3)
corresponds to a population of units tuned to a basic set of features (e.g., units
spanning the full range of possible orientations or directions of motion, etc)
in models of the primary visual cortex (Hubel and Wiesel, 1962). These hy-
percolumns are then replicated at all positions in the visual field and multiple
scales. An alternative perspective is to think of processing stages in terms of fea-
ture maps. Typically, maps correspond to retinotopically organized population
of units tuned to the same feature (e.g., specific motion direction, orientation,
binocular disparity, etc) but at multiple positions (tiling the visual space) and/or
multiple scales. This model is often referred to as the ice-cube model and more
complex models of columnar organization have been proposed since (e.g., to ac-
count for pinwheel centers Von der Malsburg (1973)), hierarchical models of the
visual system typically follow the ice-cube model for its simple implementation.

In addition to the feedforward (bottom-up) connections, which correspond
to projections from processing stage k to kx > k, units can also be connected
via lateral (horizontal) connections (both short-range connections within a hy-
percolumn and long range between hypercolumns at different retinal locations)
or feedback (top-down) connections from processing stage k to kx < k (e.g.,
(Wallis and Rolls, 1997; O’Reilly et al., 2013)).

Neuronal operations

Different hierarchical models of the visual system differ in terms of the operation
that they implement. Examples of operations include both linear and non-linear
pooling stages. Linear pooling can be described by the following operation:

y:Zwixi:w-x, (1)
iel

where y is a scalar that corresponds to the activity of the pooling unit (over
a set of afferent units I), w = (wq,...wg,...w,) is the vector of synaptic
weights (often referred to as a linear “filter”, the neuron linear receptive field



or “projective field”) for the corresponding input vector x = (x1,... T, ... Zy).
The pool of units I is typically organized in terms of hypercolumns / feature
maps (see above). For instance, in models of the primary visual cortex, the
synaptic weights of a simple cell tuned to spatial orientation can be thought of
as a 2D filter parameterized by the weight matrix W = {w;; }, w;; corresponds
to the weight of the unit at location (7, ) within the receptive field. Here we
consider two dimensional receptive fields for simplicity but in the general case
receptive fields can have many dimensions including time, feature types, eye
dominance, etc.

A good 2D mathematical model of simple cells’ receptive fields is the Gabor
function (Jones and Palmer, 1987), which is given by the following equation:

(i +7%5%) 2m -
W;; = exp <—%._2 X COs T’L (2)

st. i=icosf+ jsinf and j = —isinf + j cos 6.

The five parameters, i.e., the orientation 6, the aspect ratio 7y, the effective
width o, the phase ¢ and the wavelength A, determine the properties of the
spatial receptive field of the corresponding model simple cell (see Figure 4 for
an example of a 2D Gabor function). Also there exists a straightforward 3D
extension of this parameterization to include a temporal receptive field (see
Dayan and Abbott, 2001).

A simple extension of the linear model is the linear-nonlinear (LN) cascade
model whereby the unit response y is passed to a non-linear scalar function f
with non-negative output (Rieke et al., 1997):

Y= f(z w;z;) ~ wa9($i)7 (3)
il iel
Popular choices for the function f include rectification functions, exponential
functions, or the logistic and the hyperbolic function). The LN model has been
shown to account for a host of experimental data (Rieke et al., 1997) and it
has been shown that in many cases, biophysically more realistic, spiking neuron
models can be reduced to a simple LN cascade (Ostojic and Brunel, 2011). The
LN cascade (linear filter followed by the hyperbolic function) has also been the
main pooling operation used in standard connectionist networks.
Extensions of the LN cascade include the addition of a normalization stage,
in which the response y of the neuron is divided by a common factor that
typically includes the summed activity of a pool of neurons:

> wif(x;)
i€l
Y= = 4
Y o) W
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where k < 1 is a constant to avoid zero-division. The pool of neurons J used for
normalization may correspond to the same pool of neurons I which shape the



(classical) receptive field or may extend beyond to account for extra-classical
receptive field effects (Series et al., 2003). Normalization circuits were originally
proposed to explain the contrast response of cells in the primary visual cortex
and are now thought to operate throughout the visual system, and in many
other sensory modalities and brain regions (see Carandini and Heeger, 2012, for
a recent review).

For instance, in the HMAX model shown on Figure 2, two types of opera-
tions have been assumed: A bell-shaped tuning functions for simple cells and
a max-like operation at the level of complex cells (Riesenhuber and Poggio,
1999). Interestingly both operations can be approximated via a specific form of
Equation 4. Mathematically, a bell-shaped tuning function and a softmax, take
essentially the same general form, that is:

St
el (5)
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where p, ¢ and r represent the static nonlinearities in the underlying neural
circuit. Such nonlinearity may correspond to different regimes on the f — I
curve of the presynaptic neurons such that different operating ranges provide
different degrees of nonlinearities (from near-linearity to steep non-linearity).
An extra sigmoid transfer function on the output g(y) = 1/(1 + exp®®=5))
controls the sharpness of the unit response. By adjusting these non-linearities,
Eq. 5 can approximate better a max or a tuning function (see Kouh and Poggio,
2008, for details).

Why hierarchies?

The most studied visual function is probably object recognition, which reflects
our ability to assign a label or meaning to an image of an object irrespective of
the precise size, position, illumination or context and clutter. The main compu-
tational problem in object recognition is achieving invariance while preserving
selectivity (Riesenhuber and Poggio, 1999); cells found in IT are typically tuned
to views of complex objects such as faces (Tsao and Livingstone, 2008) — they
discharge strongly to a face but very little or not at all to other objects. A hall-
mark of these cells is the robustness of their responses in the face of stimulus
transformations such as scale and position changes. This finding presents an
interesting question: How could these cells respond differently to similar stim-
uli (for instance, two different faces) that activate the retinal photoreceptors
in similar ways, but respond consistently to scaled and translated versions of
the preferred stimulus, which produce very different activation patterns on the
retina? It has been postulated that the goal of the ventral stream of the vi-
sual cortex is to achieve an optimal tradeoff between selectivity and invariance



via a hierarchy of processing stages whereby neurons at higher and higher lev-
els exhibit an increasing degree of invariance to image transformations such as
translations and scale changes (Riesenhuber and Poggio, 1999).

Now, why hierarchies? Several hypotheses have been described to explain
the hierarchical modularity of our visual system ranging from a stability argu-
ment (i.e., faster adaptation or evolution of the system in response to changing
environmental conditions) to minimization of wiring cost in addition to other
evolutionary arguments (see Meunier et al., 2010, for review). An alternative
hypothesis — for models in the Hubel & Wiesel spirit — is that the hierarchy may
provide a solution to the invariance-selectivity trade-off problem by decompos-
ing a complex task such as invariant object recognition in a hierarchy of simpler
ones (at each stage of processing). Hierarchical organization in cortex is not
limited to the visual pathways, and thus a more general explanation may be
needed. Interestingly, from the point of view of classical learning theory (Pog-
gio and Smale, 2003), there is no need for architectures with more than three
layers.

So, why hierarchies? There may be reasons of efficiency, such as the efficient
use of computational resources. For instance, the lowest levels of the hierarchy
may represent a dictionary of features that can be shared across multiple clas-
sification tasks (Geman, 1999). There may also be the more fundamental issue
of sample complexity, the number of training examples required for good gen-
eralization (see Serre and Poggio, 2010, for a discussion). An obvious difference
between the best classifiers derived from learning theory and human learning is
in fact the number of examples required in tasks such as object recognition. Sta-
tistical learning theory shows that the complexity of the hypothesis space sets
the requirement for the number of samples needed for learning. If a task — like a
visual recognition task — can be decomposed into low-complexity learning tasks
for each layer of a hierarchical learning machine, then each layer may require
only a small number of training examples (Poggio and Smale, 2003). Neuro-
science suggests that what humans can learn may be represented by hierarchies
that are locally simple. Thus, our ability to learn from just a few examples, and
its limitations, may be related to the hierarchical architecture of cortex.

Limitations

To-date most existing hierarchical models of visual processing both from the
perspective of biological and machine vision are instances of feedforward mod-
els (but see O’Reilly et al., 2013). These models have been useful to explore the
power of fixed hierarchical organization as originally suggested by Hubel and
Wiesel (1962). These models assume that our core object recognition capability
proceeds through a cascade of hierarchically organized areas of the visual cortex
with computations at each successive stage being largely feedforward (Riesen-
huber and Poggio, 1999; DiCarlo et al., 2012). They have led, for instance, to
algorithms competitive with the best computer vision systems (see Serre and
Poggio, 2010, for a review). Their limitations, however, are becoming increas-
ingly obvious. Not only top-down effects are key to normal, everyday vision,
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but back-projections are also likely to be a key part of what cortex is comput-
ing and how. Human observers can essentially answer an infinite number of
questions about an image (one could in fact imagine a Turing test of vision).
Thus, a major question for modeling visual cortex revolves around the role of
back-projections and the related fact that vision is more than object recogni-
tion and requires interpreting and parsing visual scenes (as opposed to simply
finding out whether a specific object is present in the visual scene or not).

In addition, while the overall hierarchical organization of the visual cortex is
now well established (Felleman and Van Essen, 1991), the parallel between the
anatomical and functional hierarchy is, however, looser than one might expect.
While the trend is, from lower to higher visual areas, for neurons’ receptive fields
to become increasingly large and tuned to increasingly complex preferred stim-
uli, there remains a very broad distribution of tuning and receptive field sizes in
all areas of the visual hierarchy. For instance, IT, which is commonly assumed
to have solved the problem of invariant recognition (DiCarlo et al., 2012), also
contains neurons with relatively small receptive fields and tuned to relatively
simple visual features such as simple orientations (Desimone et al., 1984). A
close comparison of shape representation between V1, V2 and V4 also demon-
strated a complex pattern of shape selectivity with significant deviation from
strict hierarchical organization with some cells in V1 exhibiting more complex
tuning than some cells in V4 (Hegde and Van Essen, 2007). Furthermore, beside
the visual cortical hierarchy, there exist additional subcortical pathways (includ-
ing cortico-thalamo-cortical loops). Hence, the anatomical hierarchy should be
taken as an idealization and cannot be taken as a strict flowchart of visual
information (Hegdé and Felleman, 2007).

Cross-References

Feedforward network, Recurrent network, Deep learning network
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