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One of the major goals in visual neuroscience is to understand how the cor-
tex processes visual information [57]. A substantial effort has thus gone into
characterizing input-output relationships across areas of the visual cortex [16],
which has yielded an array of computational models. These models have, how-
ever, typically focused on one or very few visual areas, modules (form, motion,
depth, color) or functions (e.g., object recognition, boundary detection, action
recognition, etc.), see [73] for a recent review. An integrated framework that
would explain the computational mechanisms underlying vision beyond any spe-
cific visual area, module or function, while being at least consistent with the
known anatomy and physiology of the visual cortex is still lacking.

The goal of this review is to draft an initial integrated theory of visual
processing in the cortex. We highlight the computational mechanisms that
are shared across many successful models and derive a taxonomy of canonical
computations. Such an enterprise is reductionist in nature as we break down
to a basic set of computations the myriad of input-output functions found in
the visual cortex. Identifying canonical computations that are repeated and
combined across visual functions will pave the way for the identification of their
cortical substrate [5].

Canonical microcircuits are a theorist’s dream because their very existence
provides evidence that different visual cortices indeed tackle one common set of
computational problems with a shared toolbox of computations, and constitute
the building blocks of the different information processing pathways throughout
the visual cortex. While the identification of canonical circuits has proved elusive
[17], recent technological advances hold new promises: from complete anatomi-
cal reconstructions of circuits in increasingly large volumes of brain tissue [72]
to the recording of increasingly large populations of neurons [99] combined with
an ability to selectively modulate their activity [20].

We start this review with an overview of cortical filter models, focusing
on the two-dimensional Gabor function, a notorious example successfully used
to characterize the receptive field of orientation-selective cells as found in the
primary visual cortex. We use this model as a case in point for understanding
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Figure 1: Cortical filter models of the primary visual cortex. A good
linear filter model that can be well fitted to simple cells is the Gabor filter
[55, 11, 12, 43]. (Note that other parametrizations are also possible, see text.)
Computational models of the primary visual cortex typically include a battery
of such filters spanning a range of orientations, spatial frequencies and phases.

how computational mechanisms for the processing of two-dimensional shape
extend to other domains including color, binocular disparity, and motion. We
further demonstrate how these basic computations can be cascaded within a
hierarchical architecture to account for information processing in extra-striate
areas, examining the theoretical underpinnings of their effectiveness. Finally,
we describe other possible canonical circuits or principles of design that hold
promise for future research.

1 Cortical filter models of form processing

1.1 The linear-nonlinear (LN) model

Cortical filter models, also referred to as “cortex transform” models [105], have
been widely used to describe the input-output transfer function of neurons across
cortical areas and visual functions (see [48] for a broad overview). Under this
broad family of models, the output (or activity, by reference to the firing of
biological neurons) of a model cell (also called “unit”) depends on the activity
of units that feeds into it (the “afferent” units), which is called its “receptive
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field”. In turn, a particular unit may project onto a set of output units which
are called “projection” units. Any afferent unit may itself have its own input
units; in the case of vision, such cascades can be traced all the way back to
the retina. Thus, by extension, the receptive field of a unit also designates the
unique sub-region of the visual field that if properly stimulated may elicit a
response from the unit.

Well before the advent of modern computational modeling, neurophysiolo-
gists had developed the tools to map out the input-output function of cortical
cells in the primary visual cortex. One prominent experimental method, derived
from systems theory, is known as “reverse correlation” (see [82] for a review):
a neuron is treated as a black box which transforms a visual input x, i.e., the
set of image elements (or pixels) xi,j for i, j in its receptive field, into an output
response y. The neuron’s input-output relationship is characterized as a linear
function of its input given by the following equation:

y = w · x =
∑
i,j

wi,jxi,j . (1)

The scalars wi,j correspond to the (synaptic) weights of a linear filter and
are sometimes referred to as “the linear receptive field”. These weights can be
estimated empirically by presenting white noise as an input to the neuron while
recording its response.

A good parametrization of such linear receptive field for the simple cells
found in the primary visual cortex [36] is the Gabor function [43], which is
given by the following equation:

wij = exp

(
− (u2 + γ2v2)

2σ2

)
× cos

(
2π

λ
u+ φ

)
(2)

s.t. u = i cos θ + j sin θ and v = −i sin θ + j cos θ. (3)

The five parameters, i.e., the orientation θ, the aspect ratio γ, the effective width
σ, the phase φ and the wavelength λ, determine the properties of the spatial
receptive field of the corresponding model simple cell. Fig. 1 shows examples
of model simple cells varying in orientation, spatial frequency and phase. The
Gabor function thus describes a process that spans from the visual input falling
onto the retina on the one end, to the output activity of a model simple cell in
the primary visual cortex on the other end, including intermediate stages such
as processing by the lateral geniculate nucleus (LGN).

Other parametrizations have been proposed for simple cells. These include
Gaussian derivatives which have been shown to provide an excellent fit to cor-
tical cells receptive fields both in the spatial [110] and spatio-temporal domain
[111]. They were used in one of the first models of pre-attentive texture dis-
crimination using early vision mechanisms [54].

However, biological neurons also behave in nonlinear ways; e.g., their output
tends to saturate as their input grows stronger, instead of increasing indefinitely
as a linear input-output function would predict. Thus, cortical filter models
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Figure 2: Common nonlinear transfer functions used in cortical filter
models of the primary visual cortex. See text for details.

always include a nonlinear transfer function following the linear part, explaining
why they are also referred to as linear-nonlinear (LN) models. The above input-
output function of a model neuron then becomes:

y = f(w · x), (4)

where f is a nonlinear transfer function. Popular choices for the function f
include (half-) linear rectification functions, exponential functions (square and
square root), or the logistic and the hyperbolic functions (see Fig. 2). The LN
model has been shown to account for a host of experimental data [79] and it has
been shown that in many cases, biophysically more realistic models of neurons
(which include a spike generation process) can be reduced to a simple LN model
[69].

1.2 Divisive normalization

An extension of the LN model includes the addition of a normalization stage:

y =
f(w · x)

k +
∑
j∈J

g(v · uj)
, (5)

where k > 0 is a constant to avoid division by zero. The pool of units used
for normalization, indexed by j ∈ J , may correspond to the same (or another)
set of input units as in the tuning circuits [47] or another set of output units
as in the divisive normalization model [33]. In addition, the spatial extension
of the set of units (whether input or output) may be limited to the (classical)
receptive field of the unit, or possibly extend beyond to account for extra-
classical receptive field effects [89] (see Fig. 3 for a common implementation
of divisive normalization in the primary visual cortex). Normalization circuits
were originally proposed to explain the contrast response of cells in the primary

4



N… … …
N N N N N N

++++++ ÷

+

+

+

…

N

N

N…

…

…

…

L

L

L

L

L L L L L L …

÷

Figure 3: Divisive normalization in the primary visual cortex. The
inhibited unit (receptive field shown as a red circle) gets inhibited by other
units which share the same tuning preference but with receptive fields located
outside its receptive field (blue circles; this region is called the “extra-classical
receptive field” or “surround region”). This unit also gets inhibited by other
units within the same cortical hypercolumn (in red). “L” and “N” respectively
denote the linear and nonlinear part of the cortical LN model.

visual cortex [33] and are now thought to operate throughout the visual system,
and in many other sensory modalities and brain regions (see [6] for a recent
review).

For instance, in the Hmax model [80, 93] (see also Fig. 8 and discussion
later), two types of operations are being assumed: a bell-shape tuning oper-
ation for simple cells and a max-like operation (or “soft-max”) at the level of
position and scale-tolerant complex cells [80]. Interestingly, both operations can
be approximated as specific instances of the more general Eq. 5:

y =

∑
i,j

wi,j x
p
i,j

k +

∑
i,j

xqi,j

r , (6)

where p, q and r represent static nonlinearities in the underlying neural circuit.
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An extra sigmoid transfer function on the output g(y) = 1/(1 + expα(y−β))
controls the sharpness of the unit response. By adjusting these nonlinearities,
Eq. 6 can approximate well either a max operation or a tuning function (see
[47] for details).

1.3 LN cascade

More sophisticated computations in visual cortex can also be captured by cas-
cading several LN models into a single pipeline, where several stages of process-
ing take place in succession: the output of one stage, described by the output
of one LN model, can be integrated into the input of the following LN model
describing the next stage. In the notations used above, it means that the input
xi,j to a model cell does not represent a direct input from the visual field any-
more; instead, each position i, j in that cell’s receptive field correspond to an
actual output y from a model unit from the previous stage. The corresponding
linear weights wi,j then constitute a “generalized receptive field”.

One example include Hubel & Wiesel’s model of position invariance at the
level of complex cells. Such invariance is obtained by locally pooling over sim-
ple cells with the same preferred orientation from the afferent layer. Another
instance of the LN cascade was used to account for complex cells’ invariance
to contrast reversal. Unlike simple cells that are sensitive to the polarity of a
stimulus presented (e.g., white bar on a black background as opposed to a black
on white background), complex cells exhibit a response which is largely invari-
ant to such change. One circuit that has been proposed to explain this type of
invariance is the energy model [1, 21, 88]. In the proposed circuit, the activity of
a set of simple cells (corresponding to a first LN processing stage parametrized
by a Gabor function) with the same preferred selectivity for orientation and
spatial frequency but different selectivity for phases (corresponding to different
preferred contrast polarity) are squared, then summed (sometimes followed by
a square root nonlinearity) by a second LN stage.

y =

√∑
φ

f (xφ)
2
, (7)

Eq. 7 guarantees the result to be invariant to the reversal of the image
contrast as contrast dependence is modeled by the phase parameter in the Gabor
function. In signal processing theory, this computation is called the energy
function as it is equivalent to a local measure of the amplitude spectrum of the
image. The energy is taken over two phases, which are said to be in quadrature,
if the Gabor functions are followed by a full rectification (more realistic circuits
include more afferent subunits [2, 87]). Thus, the invariance to contrast reversal
of complex cells is also known as an invariance to phase, by analogy with the
phase parameter of the Gabor model.
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Figure 4: Extension of the Gabor function to multiple visual modal-
ities. The notion of spatial filtering highlighted for the processing of two-
dimensional shape information can be extended to the color, disparity and
space-time (i.e., motion) domains.

2 Cortical filter models across visual cues

As discussed above, the Gabor function given in Eq. 3 provides a good descrip-
tion of the response of simple cells’ receptive fields that are characterized by a
preferred orientation, spatial frequency, phase and bandwidth tuning. However,
the conventional Gabor function only explains a limited range of the selectivity
of cells observed in the primary visual cortex, namely the processing of two-
dimensional shape information and local contrast. As we will show next, it is
possible to generalize this simple cortical filter model to account for the process-
ing of additional visual cues including color, motion, and binocular disparity.

Beyond simple cells, there exist complex cells tuned for motion, disparity and
color. However, in order to understand how complex cells should be wired across
visual channels, it is important to consider their computational roles within the
context of different visual functions: beyond position invariance which was the
original focus in models of complex cells’ visual processing [36], one needs to
consider the cue-specific invariances (and selectivities) that are relevant to a
particular visual channel. Although the answer is often specific to each cue, we
will strive to highlight common theoretical principles whenever possible.

2.1 Color processing

The standard Gabor function is a local function of the image contrast. Studies
of color processing have shown that three types of cones in the retina, that
are selective for long (L), medium (M) and short (S) wavelengths, project to
the LGN via ganglion cells. In the LGN, the visual input is reorganized into
opponent color channels, which are also found in the primary visual cortex: Red
(R) versus green (G) and blue (B) versus yellow (Y). The existence of additional
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channels such as a red versus cyan channel is also debated [8]. These channels
can be traced back to inputs from individual cone types [95] (either L versus
M, or S versus L+M, respectively). The conventional Gabor function, defined
by its shape parameters, can be extended to the chromatic domain in order to
account for the color-sensitive receptive fields of primary visual cortex simple
cells [112].

There exist two functional classes of color-sensitive cells: single- and double-
opponent receptive fields [37, 64, 95]. Single-opponent receptive fields exhibit
a center-surround configuration with excitatory center and inhibitory surround
corresponding to one of the following pairs: R+G- (red ON, green OFF, mean-
ing the cell is driven by a red light increment in the center and inhibited by an
increment of green in the surround), G+R-, B+Y-, and Y+B-. Electrophysio-
logical studies have shown that such cells can be modeled well by considering
a standard Gabor function, and using the positive component of the function
for the ON component of the receptive field, and its negative component for
the OFF component [42, 95]. Note that this yields only a weakly orientation-
selective receptive field. In a computer model, the Gabor function can be defined
across the L, M and S channels of an LMS image (or more simply across the R,
G and B channels of an RGB image for a computer vision application [112]).

Beside single-opponent cells, one can find double-opponent receptive fields,
which, in addition to exhibiting chromatic opponency, also exhibit spatial op-
ponency. Zhang et al. [112] have shown that this type of receptive field organi-
zation can be derived by cascading the output of the single-opponency (LN +
normalization) stage with an additional LN stage (Gabor function + half-wave
rectification, see Fig. 5).

Note that although we described how to extend a Gabor receptive field to
account for color opponent processing, color-selective complex cells require ad-
ditional work. The chromatic analogue of the invariance to contrast reversal
as observed in the grayscale domain is an invariance to chromatic contrast re-
versal, or, equivalently, to the phase of a color-opponent equiluminant grating
[40, 41, 42]. To achieve such an invariance, one may consider an energy model
atop an LN stage based on a chromatic Gabor receptive field to combine the out-
put of a model cell selective for a certain opponent pair with that of a model cell
selective for the reverse pair. For example, a red-green double opponent com-
plex cell can be created by combining the activities of double-opponent simple
cells R+G- and G+R- with the energy model. In addition, the resulting model
complex cell can also be made invariant to the position of its preferred stimulus
within its receptive field, just like a conventional contrast-sensitive complex cell,
by using a max-pooling operation as discussed before. In the end, the resulting
color-responsive complex cell responds most to a chromatic edge or bar of the
preferred orientation and opponent color pair anywhere in its receptive field.

2.2 Binocular disparity processing

The monocular Gabor function can be extended to binocular visual inputs [46].
By allowing the Gabor function associated with either eye to have independent
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Figure 5: The circuitry of single-opponent and double-opponent color-
responsive units. Single-opponent linear receptive fields in the primary vi-
sual cortex combine chromatically-opponent subunits (here in green and red
for a R+G- unit), whereas double-opponent subunits include an additional step
with a spatially-opponent, orientation-selective linear receptive field. Double-
opponent processing is a good example of an LN cascade, where each LN module
(boxes shaded in gray) is made of a canonical sequence of computations: a lin-
ear operation (L), then a nonlinear transfer function (N), and finally divisive
normalization among several units (÷).

parameters, we introduce two new dimensions to the binocular filter thus created
and that was described in section 1. Phase disparity is defined as the phase
difference between the monocular inputs from each eye, and position disparity
as the offset between the locations of either monocular receptive field within the
visual field. A model binocular unit then linearly combines the output of each
of its two afferents (given by a Gabor function for the left eye and another one
for the right eye), followed the energy model described by Eq. 7; by extension,
this particular model of binocular disparity processing is also called the energy
model [68, 66]. By definition, such a cell exhibits a preference for a given phase
and position disparity, and a population of such cells is able to represent all
disparities across the visual field [76]. Disparity is a good representation to
have as any object seen from a stereoscopic sensory device creates a specific
pattern of disparity that is related to its viewing depth and appearance; thus,
by leveraging disparity, depth can be recovered (more specifically, it is inversely
related to disparity).

Given certain phase and position disparities, the notion of complex cell can
be directly derived from the monocular case, by taking the energy of the cells
with the same tuning preferences (both disparity, orientation and spatial fre-
quency) and with their phases in quadrature [67, 66] (note that the quadrature is
defined across afferents, which have binocular receptive fields, and not between
each eye). Such a unit is selective for certain phase and position disparities
while being phase-invariant; invariance in position can still be achieved through
max-pooling. Note that some models also pool over orientations and/or spatial
frequencies in order to reduce noise and make sure the population will peak
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at veridical disparities [22]; such cells are then robust to changes to the power
spectrum of the input stimulus (if pooling over both orientation and spatial
frequency). Complex cells tuned to binocular disparity, invariant to reversal of
contrast, were found in the primary visual cortex [67].

2.3 Motion processing

The static Gabor function can be extended to the space-time domain by intro-
ducing a time-dependent phase term that makes the periodic part of the Gabor
function drift over time within the unit receptive field [96, 13, 39, 3] (note that
some models also move the location of the receptive field itself over time; how-
ever, no evidence of such mechanism has been found in neurophysiology so far).
This generalizes the idea of sampling from the power spectrum of a static image
by a population of simple cells to that of sampling from the power spectrum of
a image sequence over time [1, 3]. The resulting cells are selective for spatial
frequency, orientation, and temporal frequency [1, 63, 3].

As before, phase-invariant complex cells can be obtained using the energy
model by combining the output activities of a pair of simple cells with the same
preferred location and tuning preferences, except for a phase difference of 90
degrees. Such a population of cells implicitly codes for local velocity (speed and
direction) in a manner invariant to the textural content of the moving element
[39]. The reason for this is that the movie of any visual element translating at a
uniform velocity has a planar power spectrum [107, 106, 96]; changes in texture
merely redistributes its power spectrum within that plane.

Therefore, model cells can be designed that are truly speed and direction
selective and locally invariant to texture, which help to alleviate the aperture
problem1, by pooling together simple cells whose spectral receptive fields lie
on the appropriate plane [96, 65]. By also pooling over nearby locations, such
motion-sensitive complex cells gain local position invariance. Evidence for such
cells has been found in MT [96, 65], therefore this is not strictly speaking a
computational model of the primary visual cortex.

3 Completing the hierarchy: models of the vi-
sual cortex

3.1 Hubel & Wiesel model

Hubel & Wiesel [36] provided the first qualitative description of the receptive
field (RF) organization of neurons in the primary visual cortex. As mentioned
in Section 1, they described two function classes of neurons: the simple and
complex cells. Simple cells respond best to oriented stimuli (e.g., bars, edges,

1The “aperture problem” reflects the inherent ambiguity associated with the direction of
motion of a moving stimulus within the receptive fields (a small aperture) of neurons in early
visual areas. Because of its limited receptive field, a motion-selective neuron will often produce
identical responses for stimuli that vary greatly in their shape, speed and orientation.
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Figure 6: Hubel & Wiesel model. A simple unit (middle layer) pools over
afferent units with center-surround receptive fields (bottom layer) aligned along
a preferred axis of orientation. At the next stage (upper layer), a complex
unit pools over afferent simple units with the same preferred orientation and
spatial frequency within a small spatial neighborhood. Thus, the complex unit
shown here is tolerant to local shifts of the preferred stimulus within its receptive
field. A more complete model would also include pooling over simple cells tuned
to slightly different spatial frequencies and phases [86, 7] – consistently with
the observed broadening in frequency bandwidth [15] and tolerance to contrast
reversal found in complex cells.

gratings) at one particular orientation, position and phase (i.e., a light bar on
a black background or a dark bar on a light background) within their relatively
small receptive fields (typically a fraction of a degree up to about one degree of
visual angle in the monkey). Complex cells, on the other end, while also selective
for orientation, tend to have larger receptive fields (about twice as large) and
exhibit some tolerance with respect to the exact position of the stimulus within
their receptive fields. They are also invariant to contrast reversal, i.e., the same
cell responds to a white bar on a black background or the opposite.

Fig. 6 illustrates a plausible neural circuit proposed in [36] to explain the
receptive field organization of these two functional classes of cells. Simple cell-
like receptive fields can be obtained by pooling the activity of a small set of
cells tuned to spots of lights with a center-surround organization (as observed
in ganglion cells in the LGN and layer IV of the striate cortex) aligned along a
preferred axis of orientation (Fig. 6, bottom layer). At the next stage, position
tolerance at the complex cell level, can be obtained by pooling over afferent sim-
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ple cells (from the level below) with the same preferred (horizontal) orientation
but slightly different positions (Fig. 6, middle layer).

Today, nearly half a century after Hubel & Wiesel’s initial proposal, the
coarse circuitry underlying the organization of RFs in the primary visual cortex
is relatively well established [2, 86, 7]. Using this circuit as a building block, nu-
merous hierarchical models of the visual cortex have been proposed (see [90] for
a recent review) and used to demonstrate the ability of this type of architectures
to be invariant to increasingly challenging transformations in the visual input
(e.g., changes in the viewing angle of an object), while remaining selective for
relevant aspects of it (e.g., the identity of said object), a quandary also known
as the invariance-selectivity trade-off.

3.2 Hierarchical models: formalism

Hierarchical models of the visual system come in many different forms: they
differ primarily in terms of their specific wiring and corresponding parametriza-
tions as well as the mathematical operations that they use. However, all these
computational models exhibit a common underlying architecture corresponding
to multiple cascaded stages of processing such as the one shown on Fig. 7. Units
at any stage k+ 1 pool selectively over afferent units from the previous stage k
over a local neighborhood (shown in pink). In general, pooling may occur over
multiple dimensions of the afferent units (e.g., position, scale, orientation, etc.).
Pooling over multiple locations (as shown in stages k or k + 1 on Fig. 7) leads
to an increase in the receptive field size of the units at the next stage (compare
the receptive field size of a unit at stage k shown in red with that of a unit at
a higher stage k + 1.

For instance, a computational instantiation of the Hubel & Wiesel hierarchi-
cal model of the primary visual cortex corresponds to three processing stages.
Simple units in layer k = 1 (highlighted in pink in Fig. 7) receive their inputs
from center-surround cells in LGN sensitive to light increment (ON) or light
decrement (OFF) in the previous layer k = 0 (in red). Complex cells in layer
k = 2 pool over afferent simple cells at the same orientation over a local neigh-
borhood (shown on Fig. 7 in purple is a 4 × 4 neighborhood). These types of
circuits have yielded several models of the primary visual cortex that have fo-
cused on explaining in reasonably good biophysical details the tuning properties
of individual cells (e.g., orientation, motion or binocular disparity, see [48] for a
review).

12



Figure 7: Hierarchical models of the visual system. They are characterized
by multiple stages of processing whereby units in one stage (shown as squares)
pool the response of units from the previous stage (colored projections). Indi-
vidual stages, also called layers (shown as gray stacks), contain multiple feature
maps organized in terms of both space and scale. An hyper-column contains
all possible features from all feature maps for that location. Hence each stage
can be thought of as containing hyper-columns replicated at all positions and
scales. In the most general case, hierarchical models allow for communication
both ways between any two consecutive stages (feedforward and feedback con-
nections), as well as between units part of the same stage (lateral connections).
The building block of many successful hierarchical models, i.e., the circuit pro-
posed by Hubel & Wiesel decades ago, is embedded as a particular example
and shown in red (center-surround stage), pink (simple cell stage), and purple
(complex cell stage). 13



In recent years, because of the increasing amount of computing power avail-
able, the scale of models of visual processing has increased with models now
encompassing large portions of the visual field and entire streams of visual pro-
cessing (see [91] for a review). Alternating between multiple layers of simple
units and complex units leads to an architecture that is able to achieve a dif-
ficult trade-off between selectivity and invariance: along the hierarchy, units
become tuned to features of increasing complexity (e.g., from single oriented
bars, to combinations of oriented bars to form corners and features of inter-
mediate complexities) by combining afferents (complex units) with different se-
lectivities (e.g., units tuned to edges at different orientations). Conversely, at
each “complex unit” stage, complex units become increasingly invariant to two-
dimensional transformations (position and scale) by combining afferents (simple
units) with the same selectivity (e.g., a vertical bar) but slightly different posi-
tions and scales.

While recent work has suggested that ’simple’ and ’complex’ cells may repre-
sent the ends of a continuum instead of two discrete classes of neurons (see [83]
for a discussion), this dichotomy is probably not critical for hierarchical models
of the visual system. Indeed, recent models do not distinguish between simple
and complex cell pooling [70].

Units in hierarchical models of the visual cortex are typically organized in
columns and/or feature maps. An hyper-column (shown in blue in Fig. 7)
corresponds to a population of units tuned to a basic set of features (e.g., units
spanning the full range of possible orientations or directions of motion, etc.)2

in models of the primary visual cortex [see 36]. These hyper-columns are then
replicated at all positions in the visual field and multiple scales. An alternative
perspective is to think of processing stages in terms of feature maps. Typically,
maps correspond to retinotopically organized population of units tuned to the
same feature (e.g., specific motion direction, orientation, binocular disparity,
etc.) but at multiple positions (tiling the visual space) and/or multiple scales.

The first instance of such a columnar model was indeed proposed by Hubel &
Wiesel [36] to explain orientation tuning and ocular dominance in the primary
visual cortex, and was named the ice cube model. While more complex models
of columnar organization have been proposed in recent years (e.g., to account for
pinwheel centers), hierarchical models of the visual system follow the inspiration
of the ice cube model for its simplicity of implementation. Thus, the set of all
units within a stage typically exhibits this kind of dual organization both in
terms of the visual field which they tile with their receptive fields, and in terms
of their selectivities, which can be thought to span all the possible values at
every location in the visual field.

In addition to the feedforward (bottom-up) connections, which correspond
to projections from processing stage k to k∗ > k, units can also be connected via
lateral (horizontal) connections (both short-range connections within an hyper-
column and long range between hyper-columns at different retinal locations) or
feedback (top-down) connections from processing stage k to k∗ < k.

2A full model would also include eye dominance.
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3.3 Models of object recognition

Historically, most hierarchical models that have been proposed have focused
on the processing of two-dimensional shape information in the ventral stream
of visual cortex, which follows a hierarchy of brain stages, starting from the
retina, through the LGN in the thalamus to primary visual cortex (primary
visual cortex, or striate cortex) and extra-striate visual areas, secondary visual
cortex (V2), quaternary visual cortex (V4) and the inferotemporal cortex (IT).
In turn, IT provides a major source of input to prefrontal cortex (PFC) involved
in linking perception to memory and action (see [16] for a recent review).

As one progresses along the ventral stream visual hierarchy, neurons become
selective for increasingly complex stimuli – from simple oriented bars and edges
in early visual areas to moderately complex features in intermediate areas (such
as combinations of orientations) and complex objects and faces in higher visual
areas such as IT. In parallel to this increase in the complexity of the preferred
stimulus, the invariance properties of neurons also increase with neurons grad-
ually becoming more and more tolerant with respect to the exact position and
scale of the stimulus within their receptive fields. As a result of this increase in
invariance properties, the receptive field size of neurons increases, from about
one degree or less in the primary visual cortex to several degrees in IT.

Explaining the selectivity and invariance properties of the ventral stream of
the visual cortex has been one of the driving forces behind the development of
hierarchical models of object recognition (see [90] for review). These models
have a long history: the initial idea was proposed by Marko & Giebel with
their homogeneous multi-layered architecture [56] and was later used in several
visual architectures including Fukushima’s Neocognitron [25], convolutional net-
works [50] and other models of object recognition [104, 61, 80, 108, 102, 93, 59].
Over the years, these hierarchical models were shown to perform well for the
categorization of multiple object categories (see [94] for a review).

The Hmax model [80, 93] shown in Figure 8 constitutes a representative ex-
ample of feedforward hierarchical models. It combines mechanisms for building
up invariance and selectivity through the hierarchy, inspired by the Neocogni-
tron with view-based theories of 3D object recognition [81]. Hmax attempts to
mimic the main information processing stages across the entire ventral stream
visual pathway and bridges the gap between multiple levels of understanding
[94]. This system-level model seems consistent with physiological data in non-
human primates in different cortical areas of the ventral visual pathway [92], as
well as human behavioral data during rapid categorization tasks with natural
images [93, 10] (but see also [27, 4, 109, 44]).

In recent years, a number of Hmax extensions have been proposed. Most
of them have focused on the learning of visual representations in intermediate
stages of the model. One prominent example includes the work by Masquelier
and colleagues who incorporated biologically-plausible learning mechanisms in
the Hmax based on temporal continuity in video sequences [58], evolutionary
algorithms [28], as well as spike-timing dependent-based learning rules [59, 45].
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Classification 
units

PIT/AIT

V4/PIT

V2/V4

V1/V2

Figure 8: Sketch of the Hmax hierarchical model of visual processing:
Acronyms: V1, V2 and V4 correspond to primary, secondary and quaternary
visual areas, PIT and AIT to posterior and anterior inferotemporal areas, re-
spectively. Tentative mapping to neurophysiology is shown in color, some areas
of the parietal cortex and dorsal streams are not shown. The model relies on
two types of computations: a max-like operation (shown in dash circles) over
similar features at different position and scale to gradually build tolerance to
position and scale, and a bell-shape tuning operation (shown in plain circles)
over multiple features to increase the complexity of the underlying representa-
tion, see [91] and text for details. Since it was originally developed, the model
has been able to explain a number of new experimental data. This includes
data that were not used to derive or fit model parameters. The model seems
to be qualitatively and quantitatively consistent with (and in some cases actu-
ally predicts) several properties of subpopulations of cells in the primary visual
cortex, V4, IT, and PFC as well as fMRI and psychophysical data.
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The models of object recognition described above use (Hebbian-like) un-
supervised learning rules: they learn commonly-occurring visual features from
natural images irrespective of their diagnosticity in object categorization. These
learning rules seem consistent with ITC recordings that have shown that the
learning of position and scale invariance, for instance, is driven by the subject’s
visual experience [51, 52] and is unaffected by reward signals [53].

However, a class of neural networks called deep learning architectures have
recently brought about a small revolution in machine learning by becoming the
new state-of-the-art on a variety of categorization tasks ranging from speech,
music, text, genomes and images (see [49] for an up-to-date review). They differ
in two ways from more traditional hierarchical models of the visual cortex such
as the aforementioned Hmax and Neocognitron. First, learning across processing
stages is fully supervised and uses the back-propagation algorithm (see [49] for
a history), which propagates an error signal from upper-level (categorization)
layers towards lower-level (perceptual) ones. Thus, only visual features that are
diagnostic for the trained categorization tasks will be learned.

Second, deep learning architectures do not try to imitate biology as well as
older hierarchical models of the visual cortex, which are constrained to match
neuroscience data on a wide range of parameters (receptive field sizes, invari-
ance and other tuning properties, number of layers). For instance, state-of-the-
art deep learning architectures incorporate many more layers (over 20 layers
[100, 32]) in comparison to hierarchical models of the visual cortex (e.g., 7 lay-
ers for the Hmax). They possibly incorporate entire ensembles of deep networks
for a given categorization task [100, 32]; improved training methods and accu-
racy have resulted in even deeper networks that can implement more complex
classification functions. This, in turn, comes at the cost of sample complexity:
the number of samples required for proper training increases with the number of
parameters to be fitted. Not surprisingly, significant efforts have thus been re-
cently dedicated to building ever-growing large-scale annotated image and video
datasets (the ImageNet Large Scale Visual Recognition Challenge [84] contains
>1M images and 1,000 categories), enabling the training of increasingly large
networks (compare with the 2010 PASCAL VOC challenge [18] with <20,000
images and 20 categories).

Perhaps surprisingly, despite the absence of neuroscience constraints on mod-
ern deep learning architectures, recent work has shown that these architectures
are better able to explain ventral stream neural data [109, 4, 44, 30]. In ad-
dition, these networks outperform all other models by a large margin [4] and
are starting to match human level of accuracy for difficult object categorization
tasks [32].

3.4 Models across visual cues

The effectiveness of hierarchical models of two-dimensional shape processing
and object recognition has recently led to considerable interest in building hier-
archical extensions to multiple visual cues beyond the early processing models
described in Section 2. The main idea in these models is to reuse basic compu-
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tational building blocks (such as the ones described in Section 1 and 2) across
several processing stages. Moreover, the ever-increasing trove of electrophysiol-
ogy data in mid-level visual areas now makes it possible to effectively constrain
the space of all possible models.

Going beyond two-dimensional shape processing, several hierarchical models
of motion processing have been proposed. For instance, computational models
composed of the core operations described in Sections 1 and 2 have been shown
to be able to reproduce the selectivity of motion-selective neurons in the dorsal
stream of the visual cortex to complex moving stimuli such as drifting plaids
[96, 85] and continuous deformations [62]. Closely related models of the ventral
and dorsal streams for the processing of form and motion, respectively, were
used to model the brain mechanisms underlying action recognition [29].

Building on models of the dorsal stream of the visual cortex [96, 29, 85, 62],
a computer vision system was shown to perform well and, at the time, compete
with state-of-the-art computer vision systems for the recognition of actions [39].
The approach was later extended to the automated monitoring and analysis of
rodents in their home-cage with accuracy on par with that of trained human
annotators for a repertoire of about a dozen behaviors [38].

More recently, an extension of this approach included speed-tuned units
as found in MT [60, 71, 75] and yielded a system for the visual control of
locomotory behavior that produced trajectories consistent with those produced
by human participants when asked to reach a goal while avoiding obstacles
in natural-looking environments (Barhomi et al. A data-driven approach to
learning strategies for the visual control of navigation. Abstract presented at
the Vision Science Society, 2014).

As for hierarchical models of color, the few efforts that have endeavored to
go beyond one stage of processing pertain to computer vision (see [112] for an
attempt to bridge this gap). These are very largely limited to solving specific
tasks such as boundary detection in natural scenes and the representations they
yield are ad hoc and cannot be compared against electrophysiology. However,
work in progress from Zhang and colleagues suggests that a model consist-
ing of the single- or double-opponent cells as described in Section 2.1 followed
by the proper divisive normalization over an extended spatial neighborhood
seems sufficient to account for psychophysics data of color constancy (Mély &
Serre. A canonical circuit for visual contextual integration explains induction ef-
fects across visual modalities. Abstract presented at the Vision Science Society,
2015).

Regarding binocular disparity, our group has started to design a hierarchical
model of disparity tuning [46] that builds on a population of model cells with
linear receptive fields based on the binocular Gabor filters described in 2.2.
Even though these units display varied selectivity to position disparity, phase
disparity, orientation, spatial frequency, scale and phase, they are individually
prone to incorrectly matching visually discordant inputs from either eye. To
address this problem (see [77] for a formalization), we leveraged the divisive
normalization circuit between units that prefer the same position disparity but
opposite phase disparities in order to reduce sensitivity to false matches. We
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further included an energy computation as well to implement local invariance
to stimulus phase. As a result, units from this additional stage of the model
tend to be much more selective to the correct binocular disparity.

4 Discussion and concluding remarks

4.1 Why hierarchies?

It has been postulated that the goal of the visual cortex is to achieve an optimal
trade-off between selectivity and invariance via a hierarchy of processing stages
whereby neurons at higher and higher levels exhibit an increasing degree of
invariance to image transformations such as translations and scale changes [80,
94].

Now, why hierarchies? The answer – for models in the Hubel & Wiesel
spirit – is that the hierarchy may provide a solution to the invariance-selectivity
trade-off problem by decomposing a complex task such as invariant object recog-
nition in a hierarchy of simpler ones (at each stage of processing). Hierarchical
organization in cortex is not limited to the visual pathways, and thus a more
general explanation may be needed. Interestingly, from the point of view of
classical learning theory [74], there is no need for architectures with more than
three layers. So, why hierarchies? There may be reasons of efficiency, such as
the efficient use of computational resources. For instance, the lowest levels of
the hierarchy may represent a dictionary of features that can be shared across
multiple classification tasks [26].

There may also be the more fundamental issue of sample complexity, the
number of training examples required for good generalization (see [94] for dis-
cussion). An obvious difference between the best classifiers derived from sta-
tistical learning theory and human learning is in fact the number of examples
required in tasks such as object recognition. Statistical learning theory shows
that the complexity of the hypothesis space sets the speed limit and the sample
complexity for learning. If a task – like a visual recognition task – can be decom-
posed into low-complexity learning tasks for each layer of a hierarchical learning
machine, then each layer may require only a small number of training exam-
ples. Neuroscience suggests that what humans can learn may be represented by
hierarchies that are locally simple. Thus, our ability to learn from just a few
examples, and its limitations, may be related to the hierarchical architecture of
cortex.

4.2 Limitations

To date, most existing hierarchical models of visual processing both from the
perspective of biological and machine vision are instances of feedforward mod-
els. These models have been useful to explore the power of fixed hierarchical
organization as originally suggested by Hubel & Wiesel. These models assume
that our core visual capabilities proceed through a cascade of hierarchically
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organized areas along various streams of processing in the visual cortex with
computations at each successive stage being largely feedforward [80, 16]. They
have led, for instance, to algorithms that were at the time competitive with
the best computer vision systems [94] and culminating with deep learning ar-
chitectures that are bringing about a small revolution in artificial intelligence
[49].

The limitations of these visual architectures, however, are becoming increas-
ingly obvious. Not only top-down effects are key to normal, everyday vision, but
back-projections are also likely to be a key part of what cortex is computing and
how. Thus, a major question for modeling visual cortex revolves around the role
of back-projections and the related fact that vision is more than categorization
and requires interpreting and parsing visual scenes (as opposed to simply finding
out whether a specific object is present in the visual scene or not). A human
observer can essentially answer an infinite number of questions about an image
(one could in fact imagine a Turing test of vision). Such image interpretation
tasks have proven challenging for modern computer vision architectures [23, 31].

In addition, while the overall hierarchical organization of the visual cortex
is now well established [19], the parallel between the anatomical and functional
hierarchy is, however, looser than one might expect. While the trend is, from
lower to higher visual areas, for neurons’ receptive fields to become increas-
ingly large and tuned to increasingly complex preferred stimuli, there remains a
very broad distribution of tuning and receptive field sizes in all areas of the vi-
sual hierarchy. For instance, IT, which is commonly assumed to have solved the
problem of invariant recognition [16], also contains neurons with relatively small
receptive fields and tuned to relatively simple visual features such as simple ori-
entations [14]. A close comparison of shape representation between primary
visual cortex, V2 and V4 also demonstrated a complex pattern of shape selec-
tivity with significant deviation from strict hierarchical organization with some
cells in the primary visual cortex exhibiting more complex tuning than some
cells in V4 [34]. Furthermore, beside the visual cortical hierarchy, there ex-
ist additional subcortical pathways (including cortico-thalamo-cortical loops).
Hence, the anatomical hierarchy should be taken as an idealization and cannot
be taken as a strict flowchart of visual information [35].

Another weakness shared by both larger-scale models of biological and ma-
chine vision are their reliance on a surprisingly limited number of computations,
viz., the linear-nonlinear (LN) modules we mentioned in Section 1 and divisive
normalization under various forms. As a result, a potentially fruitful way to
improve such hierarchical models would be to extend their repertoire to in-
clude new computations inspired by cutting-edge neurophysiology research on
cortical microcircuits. Among the cortical operations yet untapped on a large
scale by modeling efforts are dynamic or stochastic synapses (current models
assume synaptic weights to be fixed and static after learning), heavily nonlinear
computations in dendrites (current models only assume “weak” nonlinearity in
their units, viz. linearity followed by a rectification, as opposed to more complex
transformation), or synchrony between model neurons (though many researchers
have discussed its potential use to tackle the “binding problem’ between overlap-
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ping, noisy visual representations [9, 103, 97, 24, 101, 98, 78]). The availability
of large-scale architectures such as deep learning nets, combined with extensive
human-annotated datasets, should make for an ideal testbed for any potential,
cortically-inspired computational mechanism.
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