
Opponent surrounds explain diversity of contextual
phenomena across visual modalities

David A. Mély1,2,3 & Drew Linsley1,2,3 & Thomas Serre1,2,3

1Department of Cognitive, Linguistic & Psychological Sciences
2Brown Institute for Brain Science
3Brown University, Providence, RI 02912, USA.

Running head: Opponent surrounds explain diversity of contextual phenomena

Corresponding Author: Thomas Serre, Department of Cognitive, Linguistic & Psychological
Sciences, Brown University, 190 Thayer St, Providence, RI 02912, USA.

1



Abstract1

Context is known to affect how a stimulus is perceived. A variety of illusions have been attributed2

to contextual processing — from orientation tilt effects to chromatic induction phenomena, but3

their neural underpinnings remain poorly understood. Here, we present a recurrent network model4

of classical and extra-classical receptive fields that is constrained by the anatomy and physiology5

of the visual cortex. A key feature of the model is the postulated existence of near- vs. far-6

extra-classical regions with complementary facilitatory and suppressive contributions to the classical7

receptive field. The model accounts for a variety of contextual illusions, reveals commonalities8

between seemingly disparate phenomena, and helps organize them into a novel taxonomy. It9

explains how center-surround interactions may shift from attraction to repulsion in tilt effects,10

and from contrast to assimilation in induction phenomena. The model further explains enhanced11

perceptual shifts generated by a class of patterned background stimuli that activate the two opponent12

extra-classical regions cooperatively. Overall, the ability of the model to account for the variety and13

complexity of contextual illusions provides computational evidence for a novel canonical circuit14

that is shared across visual modalities.15

Keywords: extra-classical receptive field, visual cortex, illusion, induction, assimilation, tilt effect.16
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Spatial context has been known to affect perception since at least Aristotle (Eagleman, 2001).17

The past several decades of work in visual psychophysics have revealed a plethora of seemingly18

disparate contextual phenomena (Series et al., 2003) whereby subtle differences in experimental19

conditions yield a wide variety of effects (Figure 1). In the classical tilt illusion (O’Toole and20

Wenderoth, 1977; Goddard et al., 2008), the perceived orientation of a center stimulus tilts either21

towards or away from that of a surround stimulus, depending on their relative orientations. Many22

variants have been tested with a variety of stimulus parameters including spatial frequency, color,23

luminance, contrast differences between center and surround stimuli as well as their spatial and24

temporal separation (see Clifford, 2014; for a review).25

Similar effects have been reported in the motion domain – for both direction and speed (Marshak26

and Sekuler, 1979; Murakami and Shimojo, 1993; 1996; Kim and Wilson, 1997). In color induction,27

both the spatial frequency and phase of the surround controls the direction of the perceived shift in28

hue of a center stimulus relative to that of the surround (Smith et al., 2001; Monnier and Shevell,29

2003; Shevell and Monnier, 2005). In the disparity domain, a center stimulus appears closer or30

further away from an observer, depending on the relative depth and spacing between center and31

surround stimuli (Westheimer, 1986; Westheimer and Levi, 1987). While much is known about the32

psychological basis of these phenomena, our understanding of the underlying neural mechanisms33

remains, at best, fragmentary.34

A widely held assumption is that such contextual phenomena are mediated in the cortex by extra-classical35

receptive field (eCRF) mechanisms (reviewed in Series et al., 2003; Angelucci and Shushruth,36

2013): The presentation of a stimulus in the eCRF alone does not typically elicit any response37
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from the neuron but modulates its response to a stimulus presented in the classical receptive field38

(CRF). Such center-surround interactions have been reported across visual modalities including39

orientation and spatial frequency (DeAngelis et al., 1994), motion (Li et al., 1999; Jones et al.,40

2001), color (Schein and Desimone, 1990; Wachtler et al., 2003) and disparity (Bradley and41

Andersen, 1998).42

Although several eCRF models have been developed to describe specific phenomena (reviewed in43

Series et al., 2003; Schwartz et al., 2007; Angelucci and Shushruth, 2013; see also Discussion), a44

unifying theory, which would integrate disparate aspects of contextual integration and, ultimately,45

link primate neurophysiology to human behavior, is still lacking. We have thus developed a46

large-scale recurrent network model of classical and extra-classical receptive fields that distinguishes47

itself from previous work – allowing us to simulate realistic cortical responses to a variety of48

full-field, real-world, contextual stimuli defined across visual modalities (we model orientation,49

color, motion, and binocular disparity). The model is constrained by anatomical data and shown50

in our experiments to be consistent with V1 neurophysiology. A key feature of the model is the51

postulated existence of near vs. far extra-classical eCRF regions with complementary contributions52

(facilitatory vs. suppressive) to the CRF response. Using an ideal neural observer, we show that53

the model is consistent with human behavioral responses for a variety of contextual phenomena –54

revealing commonalities between seemingly disparate phenomena and helping to establish a novel55

taxonomy of contextual illusions.56
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Results57

The visual cortex is modeled as a dense, regular topographic grid of cortical (hyper)columns which58

tile the visual field (Figure 2A). Each hypercolumn contains a complete set of units with coinciding59

CRFs. Their tuning curves are idealized (see Materials and Methods), and centered at regular60

intervals (e.g., between 0o and 180o for orientation-tuned units). For simplicity, we do not take into61

account cortical magnification and assume a fixed sampling of the visual field at all eccentricities.62

The model takes into account connections both within and across hypercolumns in order to explain63

several CRF and eCRF properties. The resulting circuit motif is replicated for every hypercolumn.64

Intra-columnar recurrent circuits65

Recurrent connections (Figure 2A, red connections) within a column (i.e., originating from within66

the CRF) include both local excitatory and inhibitory connections. Inhibitory CRF contributions67

constitute one of the key mechanisms in an influential model of gain control (divisive normalization,68

reviewed in Carandini and Heeger, 2012). This model accounts for cross-orientation normalization69

phenomena (when a grating stimulus is masked by another one at any orientation, see Heeger,70

1993; Carandini and Heeger, 1994) and was later extended to capture neural population responses,71

in order to account for the competitive interactions within a single hypercolumn (Busse et al.,72

2009; Sit et al., 2009). A recent optogenetic study demonstrated that the underlying circuits73

are recurrent rather than feedforward (Nassi et al., 2015). We have also confirmed that this74

form of recurrent intra-columnar inhibition is critical for the model to reproduce these types of75

competitive interactions within the CRF and for model units to exhibit a realistic contrast response76
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(see Supplementary Experiments; Figures S1-S5.)77

Because this form of suppression does not seem to depend on the orientation of the afferent and78

target cells, it is often called “untuned” inhibition (Rust et al., 2006). In our model, we speculate79

that such untuned inhibitory recurrent connections within hypercolumns exist for all other visual80

domains (including color, motion as well as binocular disparity, see Discussion).81

In addition to short-range inhibitory connections within hypercolumns, the model also incorporates82

short-range excitatory connections. In the cortex, such excitatory connections may drive neurons83

up to ten times more strongly than their feed-forward inputs (Douglas et al., 1995; Stepanyants84

et al., 2008). As suggested by Shushruth et al. (2012), we have found that recurrent excitation85

within the CRF is essential to account for some of the more complex aspects of surround suppression86

(see Supplementary Experiments, Figures S3 and S5), by placing the column in a regime dominated87

by recurrent as opposed to feed-forward inputs. However, experimental data on the selectivity88

of these recurrent excitatory connections are scarce. Here, we assume that the corresponding89

local excitatory connections within a hypercolumn are only weakly tuned, as perfectly untuned90

excitation would effectively “flatten out” population response curves.91

Inter-columnar recurrent circuits92

Expanding the optimal stimulus of a cortical neuron immediately beyond its CRF (also commonly93

referred to as the “minimum response field” or mRF) may facilitate its response (Bringuier et al.,94

1999; Sengpiel et al., 1997; Sceniak et al., 1999; Angelucci et al., 2002a;b; Briggs and Usrey,95
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2011). The area which covers the CRF and its immediate eCRF is sometimes referred to as “peak96

spatial summation area”. It is considered distinct from the CRF because a direct stimulation of97

this eCRF region in isolation does not elicit any action potential. Since this region is located98

immediately beyond the CRF, we deem it the near eCRF (or near surround; green annulus and99

connections in Figure 2A).100

A potential neural substrate for the near eCRF includes the short-range, tuned excitatory networks (Lee101

et al., 2016) which span a spatial extent consistent with that of the eCRF facilitation (Angelucci102

et al., 2002a;b) and amplify co-occurring local inputs at similar orientations (Sengpiel, 1997;103

Sceniak et al., 1999; Angelucci et al., 2002a;b; Briggs and Usrey, 2011). In the model, we assume104

that all excitatory connections from other hypercolumns centered in the near surround are tuned,105

irrespective of the visual modality (i.e., the stimulus with the preferred orientation, or direction of106

motion, etc. in the CRF is also most effective in the near eCRF). Also note that our definition of107

the near eCRF is purely anatomical and might thus differ from that of others (e.g., Angelucci and108

Shushruth, 2013), whose definition is functional in nature.109

Expanding the optimal stimulus beyond the near eCRF results in neural suppression (first reported110

by Hubel and Wiesel, 1968; as hypercomplex tuning). Critically, the presentation of the suppressing111

stimulus in the eCRF alone does not elicit any activity from the recorded cell (see Angelucci112

and Shushruth, 2013; for review). The tuned nature of these suppressive mechanisms is well113

documented across visual modalities: from orientation (Hubel and Wiesel, 1968; DeAngelis et al.,114

1994; Weliky et al., 1995; Petrov et al., 2005; Ozeki et al., 2009) to color (Schein and Desimone,115

1990; Wachtler et al., 2003), spatial frequency (DeAngelis et al., 1994), temporal frequency (Li116
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et al., 1999; Jones et al., 2001), motion direction and speed (Allman et al., 1985) as well as117

binocular disparity (Bradley and Andersen, 1998).118

Thus, we also define an inhibitory far eCRF (or far surround; blue annulus and connections in119

Figure 2A), located immediately beyond the excitatory near eCRF. In our model, a hypercolumn120

receives tuned inhibition from hypercolumns centered in its far surround.121

To summarize, contributions from the eCRF as a whole arise from surround regions with opposite122

polarities. We do not assume any gap between the CRF and the near eCRF, nor between the near123

eCRF and the far eCRF. The model assumes that the near excitatory and far inhibitory eCRFs do124

not overlap spatially based on partial anatomical evidence (Angelucci et al., 2002b). In practice,125

we found that allowing these two eCRF regions to overlap did not affect the model’s ability to fit126

experimental data (see Supplementary Experiments).127

The first key assumption of the model is that, unlike local recurrent interactions within a hypercolumn,128

interactions across hypercolumns are “tuned” as only units that share the same preferred stimulus129

are directly connected. The second key assumption of the model is an asymmetry between excitation130

and inhibition: In the model, excitation only depends on pre-synaptic activity and is purely additive.131

Inhibition, on the other hand, from either the CRF or eCRF, depends on both pre- and post-synaptic132

activity, and ultimately results in a combination of subtractive and divisive effects (Carandini and133

Heeger, 2012). Similar forms of inhibition have been used in previous recurrent network models134

to achieve divisive normalization (Grossberg and Todorović, 1988). In practice, this means that,135

given a fixed amount of pre-synaptic inhibition, weakly active units receive less effective inhibition136
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than more active ones. In contrast, any given amount of pre-synaptic excitation results in the same137

amount of effective post-synaptic excitation.138

Neural field model139

Upon the presentation of a stimulus, recurrent interactions between units yield complex model140

dynamics. In particular, population responses at any location are modulated first by their immediate141

(near and far) eCRFs, then by responses across the visual field as transient activity propagates142

through the network, until all unit responses settle into a steady-state. Such short and long-range143

interactions are modeled using coupled differential equations and the steady-state solution of the144

resulting neural field model is computed using numerical integration methods (see Materials and145

Methods).146

Next, we describe experiments conducted in silico to compare model responses to published147

psychophysics data. Psychophysics studies typically record perceptual judgments related to a148

center stimulus under varying surround conditions. To approximate these judgments, we use an149

ideal neural observer which maps center population responses to a sensory value. Note that in most150

cases, several columns may be located within the center stimulus; while any of these columns151

would be suitable for readout by the ideal observer, we selected the center-most column for152

simplicity (unless specified otherwise). Surround modulation thus gets translated into measurable153

perceptual changes in the center that can then be compared to human behavioral data.154

We have organized these experiments into three broad categories, each reflecting a key computational155
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mechanism and highlighting commonalities across visual modalities. As we will show, these156

experiments allow a clear picture to emerge: The diversity of observed contextual phenomena may157

result from a balance between two opposing “forces” that arise from complementary excitatory-inhibitory158

eCRF mechanisms. Figure 2 shows examples of CRF and eCRF population responses recorded159

from the model together with representative transformations they undergo as a result of these two160

forces (see Discussion for more details).161

All model parameters (Table S1) governing the dynamics and relative strengths of the interactions162

between the CRF and the eCRF sub-regions were initially adjusted for the model to reproduce163

a host of V1 neurophysiology data (see Supplementary Experiments; Figures S1-S5) including a164

comparison with data from Busse et al. (2009) and Trott and Born (2015). They were held fixed for165

all subsequent comparisons with psychophysics data. After scaling the stimulus, the only model166

parameter that was optimized for individual modalities was the tuning bandwidth of individual167

model units.168

Competitive activation of the near vs. far surrounds169

Our comparison between experimental and model data starts with a set of three experiments that170

span the orientation, motion and color domains. All experiments involve simple center-surround171

stimuli, in which the surround stimulus is expected to jointly activate both the excitatory and172

inhibitory components of the eCRFs. Thus, these experiments should reveal a fundamental aspect173

of the model: the outcome of a competition between the near facilitatory and the far suppressive174
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eCRFs when they are simultaneously activated by a surround stimulus.175

The orientation tilt occurs when the perceived orientation of a center stimulus is biased either176

towards (Figure 3A) or away (Figure 3B) from the orientation of a surround stimulus, also called177

the inducing stimulus or inducer (O’Toole and Wenderoth, 1977; Goddard et al., 2008). Figure 3C178

shows representative psychophysics data (digitally extracted from Figure 4 in O’Toole and Wenderoth,179

1977; only data averaged across subjects are available from that study). These data are characterized180

by two regimes: a repulsive regime (i.e., the perceived center orientation shifts away from the181

surround orientation, corresponding to positive ordinates) when the surround orientation is similar182

to that of the center and an attractive regime (i.e., the perceived center orientation shifts towards183

the surround orientation, corresponding to negative ordinates) when the surround orientation is184

different enough from that of the center.185

The model successfully reproduces this balance between attraction and repulsion (Figure 3C; a186

similarly good fit was also obtained using broadband oriented textures as done in Goddard et al.,187

2008; data not shown). The key mechanism which enables the emergence of these two regimes188

is the postulated asymmetry between facilitatory and suppressive interactions originating from189

the near and far eCRFs, respectively. The net inhibition in the model, unlike excitation which is190

only dependent on pre-synaptic activity, increases monotonically with the level of post-synaptic191

activity of a target unit. We have confirmed this hypothesis via selective lesioning of the model192

key components (see Figure S14).193

As a result, when neural population responses in the CRF and eCRF overlap significantly (as194
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when center and surround orientations are similar), inhibition predominates and center population195

responses get comparatively more suppressed at orientations close to that of the surround. The196

center of mass of center population response curves shifts away from the surround orientation,197

biasing the neural decoding accordingly (Figure 3A). The surround thus acts as a repellent in198

this regime. In contrast, when neural population responses in the CRF and eCRF are far more199

offset (as when the surround orientation is near orthogonal to that of the center), excitation from200

the near eCRF predominates, and increases the activity of center units selective for the surround201

orientation. This results in a force that pushes the center population response towards the surround202

orientation. This, in turn, biases the decoding of the center orientation in the direction of the203

surround orientation (Figure 3B). The surround thus acts as an attractor in this regime.204

Beyond the orientation domain, tilt effects have also been reported for the perception of motion205

direction. Figure 3D shows representative psychophysics data (digitally extracted from Figure206

3 “periphery” condition in Kim and Wilson, 1997). Unlike in the orientation domain, however,207

perceptual shifts are always repulsive (the perceived motion direction of the center grating tilts208

away from that of the surround grating; both gratings have the same contrast and speed). This209

phenomenon can also be induced using coherently moving random dots (Marshak and Sekuler,210

1979); the effect seems to peak for similar center-surround differences in motion direction (between211

40o and 60o) for either kind of stimuli.212

We found both a qualitatively and quantitatively good fit between the model and psychophysics213

data as shown in Figure 3D. In the model, the disappearance of the attractive regime is accounted214

for by a broadening of the tuning curves (compared to orientation; see Supplementary Materials215
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and Methods). Interestingly, this seems consistent with neurophysiology data from the primary216

visual cortex (Ringach et al., 2002; Albright et al., 1984), which suggest that tuning for motion217

direction tends to be broader than for orientation.218

In our next experiment, we show that the model is also able to account for tilt effects in the hue219

domain, more widely known as color induction. The model reproduces the known shifts in human220

judgment obtained when a center hue is surrounded by an isoluminant background of a different221

hue (digitally extracted from Figure 2 in Klauke and Wachtler, 2015; averaged across multiple222

combinations of center-surround hues sampled uniformly and independently as done in the original223

experiment).224

As with motion induction, only a repulsive tilt effect is observed with hue. The model’s ability225

to account for these data is evident from Figure 4B, which confirms the hypothesis by Klauke226

and Wachtler (2015) that color induction is in fact just another tilt effect (i.e., a “hue tilt effect”).227

Furthermore, the same mechanisms that are responsible for the tilt effect in the orientation and228

motion domains, namely the balance between facilitatory and suppressive forces originating from229

the eCRF, are also at play in color induction (Figure 4A). However, opponent color coding yields230

populations from the center and the surround with high overlap, which explains the absence of an231

attractive regime for this phenomenon.232
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Exclusive activation of the near vs. far surrounds233

Previous experiments involved stimuli that reflected the outcome of a competition between the near234

and far eCRF, which were activated jointly. Here, instead, we consider experiments that are based235

on surround stimuli that activate the near or the far eCRFs separately.236

In classical depth induction experiments (Westheimer, 1986; Westheimer and Levi, 1987), human237

observers are presented binocularly with a center test stimulus (e.g., a thin bar) flanked by two238

surround stimuli (e.g., parallel thin bars or small squares). The disparities of the flanker stimuli239

are adjusted so that they appear in the same depth plane, either slightly in front of or behind the240

center stimulus. The planar separation between the center and flanker stimuli (i.e., their distance241

in the fronto-parallel plane) is varied systematically. Examples where the flankers appear behind242

the center stimulus for a shorter and a larger separation are shown in Figure 5A-B).243

Results from the original study (data digitally extracted from Figure 1, upper panels in Westheimer244

and Levi, 1987) are shown in Figure 5C. When the flankers are close enough to the center stimulus,245

they seem to attract it in depth (corresponding to a negative shift in perceived disparity for very246

small flankers/center separations). That is, the center stimulus appears closer to (further away247

from) the observer when the flankers are in front of (behind) the center stimulus. Instead, when the248

flankers are moved far enough laterally, they start to repel the center stimulus (corresponding to a249

positive shift in perceived disparity for larger flankers/center separations).250

The observed shifts in depth found in the model (Figure 5C) matches qualitatively with human251

psychophysics data: Flanker stimuli located close enough to the test stimulus activate solely the252
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near eCRF, resulting in a purely facilitatory net eCRF influence. As with the aforementioned tilt253

effects, net facilitatory eCRF contributions yield attraction of the center towards the surround.254

Conversely, flankers that are far enough from the test stimulus activate solely the far eCRF. This255

results in a net suppressive eCRF influence, which translates into repulsion of the center away from256

the surround.257

A classical stimulus used in motion direction induction (Murakami and Shimojo, 1993; 1996) is a258

center-surround stimulus consisting of randomly moving dots with some coherence in the surround259

but no coherence in the center. The presentation of coherently moving dots in the surround elicits260

the illusory perception of coherent motion in the center – either in the same or in the opposite261

direction to that of the surround (depending on the experimental condition). In (Murakami and262

Shimojo, 1993; 1996), the diameter of the center and surround was fixed to w and 2w, respectively,263

and the parameter w was varied systematically. This allowed the dimension of the overall stimulus264

to vary while the relative size of the center and surround regions were maintained.265

Figure 6C shows psychophysical data (digitally extracted from Figure 6 and 7 in Murakami and266

Shimojo, 1996). For small stimulus sizes, the induced center movement is in the same direction267

as that of the surround. This corresponds to an attractive regime measured as a negative shift268

in the point of subjective equality (PSE). For larger sizes, the center induced movement reverses269

direction. This corresponds to a repulsive regime measured as a positive shift in PSE.270

We found these results to be consistent with the model (Figure 6C). With a small enough stimulus,271

the coherently-moving surround dots activate the model near eCRF exclusively (Figure 6A). This272
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leads to a perceptual shift in the direction of the surround, consistent with the analogous case273

discussed in depth induction. At the population level, facilitation from the near eCRF tends to274

cause a sharpening in the population response around the surround stimulus value in an otherwise275

flat population response (as all motion directions are present in the center stimulus). As a result,276

the center stimulus looks “more like” the surround stimulus. As the stimulus size increases,277

the coherently-moving surround dots start to activate an increasingly large proportion of the far278

surround (Figure 6B), which yields the opposite (repulsive) effect. At the population level, suppression279

from the far eCRF causes a small notch around the surround stimulus value and the center stimulus280

appears to look “less like” the surround.281

Cooperative activation of the near and far surrounds282

Thus far, we have seen that a variety of contextual phenomena can be explained as resulting from283

a balance between two opposing forces: an attractive force derived from facilitatory mechanisms284

originating from the near eCRF vs. a repulsive force derived from suppressive mechanisms originating285

from the far eCRF. This competition can be tipped from attraction to repulsion by increasing286

the relative contribution of suppressive mechanisms originating from the far eCRF (relative to287

facilitatory mechanisms from the near eCRF) either by increasing the spatial extent of the stimulus288

(so as to activate an increasingly large proportion of the far eCRF) or by increasing the similarity289

between the center and surround stimulus (so as to increase the overlap between center and near290

surround population responses). However, we reasoned that if a surround stimulus takes on distinct291

and appropriate values in the near and far eCRFs (which we deem the near and far values),292
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attraction towards the near value could go in the same direction as repulsion from the far value.293

Thus, the joint activation of the two eCRF sub-regions would cooperate rather than compete,294

resulting in an even larger perceptual shift compared to what would be achieved by presenting295

either the near or the far stimulus values alone.296

The implication for color perception would be that assimilation, the attraction of the perceived297

center hue towards a neighboring inducing hue (i.e., the near hue), could be amplified by adding an298

appropriate outer hue (i.e., the far hue). This idea seems consistent with an “enhanced color shift”299

illusion discovered by Monnier and Shevell (2003), for which we provide a novel explanation.300

In the classical color assimilation illusion, a colored test ring (e.g., orange) is presented within301

a narrow uniform surround (e.g., purple or lime), which then attracts the test ring towards its302

own hue. This effect was found to be greatly amplified when patterned rings (e.g., alternating,303

thin rings of purple and lime) at an appropriate spatial frequency and phase were used in place304

of the uniform colored surround (Figure 1C). Such enhancement has also been documented with305

achromatic stimuli (Anstis, 2006) and in brightness perception (White, 1979; Anstis, 2006).306

Our model provides a simple explanation: As we have established, attraction (i.e., assimilation)307

towards say purple is caused by the activation of the near surround by a purple stimulus, with308

respect to a center region coinciding with the test ring. For the appropriate spatial frequency309

(Figure 7A), the additional lime-colored stimulus activates the far surround, leading to repulsion310

(i.e., contrast) away from lime, thus amplifying the perceptual shift towards purple as purple and311

lime are roughly perceptual opposites. By reversing the phase of the color grating (Figure 7B),312

the colors stimulating the near and far eCRFs switch, leading to the same effect in the opposite313
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direction.314

The original psychophysics data (digitally extracted from the “6 min test” curves of Figure 5 from315

Shevell and Monnier, 2005) and model data are shown in Figure 7C. The model explains the316

existence of an optimal spatial frequency value, which maximizes the magnitude of the illusion.317

The spatial frequency of the stimulus controls the strength of the illusion because it determines how318

cleanly each of the inducing colors (e.g., lime and purple) activate the near and far eCRFs respectively319

for a CRF centered on the test ring. The model also postdicts that reversing the phases of the color320

grating leads to an effect with the same amplitude but opposite direction.321

Critically, our explanation only depends on the appropriate hues falling within the near and far322

eCRFs regions; thus, we predict that the periodicity of the inducing stimulus per se is not important,323

as long as both regions are correctly stimulated. We show this with our own versions of the illusion324

in Figures S6, suggesting that the illusion is just as strong, if not stronger, when the outer rings are325

replaced with a single uniform region that activates the far surround optimally (which is not the326

case for the original stimulus by Monnier and Shevell, 2003).327

Discussion328

We have described a computational neuroscience model of recurrent cortical circuits to account329

for classical (CRF) and extra-classical receptive field (eCRF) effects. The model was constrained330

by anatomical data and shown in our experiments to be consistent with V1 neurophysiology.331

In particular, the model unifies several electrophysiology phenomena such as (cross-orientation)332

normalization within the CRF (Busse et al., 2009) and modulation by the eCRF (including feature-selective333
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suppression, see Trott and Born, 2015) into a computational neuroscience model of contextual334

integration.335

The model further provides computational evidence for the existence of two eCRF mechanisms336

with complementary contributions to the CRF (a facilitatory near vs. suppressive far eCRF). In337

addition, the model predicts that an asymmetry between excitation and inhibition in the eCRF is338

needed: In our implementation, excitation depends on pre-synaptic activity only, whereas inhibition339

depends on both pre- and post-synaptic activities. Another model prediction is that short-range340

connections within a hypercolumn are weakly tuned or untuned, whereas long-range connections341

across hypercolumns are tuned. We ran a systematic “lesioning” study on the model, whereby each342

of the hypothesized mechanisms was removed individually while all remaining parameters were343

optimized to fit behavioral data across all experiments (see Supplementary Experiments; Figures344

S7-S11.)345

Although our analysis revealed that a model which includes all assumed mechanisms performs346

best, we also found that some of the assumptions could be relaxed. Most importantly, a spatial347

segregation between the near excitatory and far inhibitory eCRF does not appear necessary and the348

model was found to be robust to significant overlap between these two regions (Figure S8). More349

generally, the model was robust to a range of parameter values (Figure S9-S11) even when relaxing350

the strict one-to-one mapping for the “tuned” connections from the eCRF onto the CRF (Figure351

S10). At the same time, while this study has focused on explaining behavioral data for an average352

observer, the model’s variations associated with changes in individual parameter values may help353

explain inter-subject variations observed experimentally (Figure S13).354
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The model distinguishes itself from previous work in succeeding to account for an array of disparate355

contextual phenomena spanning experimental conditions. Previous computational models have356

focused on explaining one or a few eCRF phenomena with an emphasis on surround suppression357

phenomena (see Series et al., 2003; Angelucci and Shushruth, 2013; for reviews): Phenomenological358

models of center-surround processing (Sceniak et al., 2001; Cavanaugh et al., 2002) and other359

normative models of visual coding (Coen-Cagli et al., 2012; Zhu and Rozell, 2013) have been360

shown to provide a good fit to single-unit contrast and size tuning responses. Recurrent network361

models have provided a mechanistic account for some of these phenomena (see Angelucci and362

Shushruth, 2013; for review) and have even led to testable predictions for single-unit electrophysiology (e.g.,363

Rubin et al., 2015). But, none of these models have been systematically compared to a broad and364

diverse set of psychophysical experiments.365

Furthermore, our model suggests that several contextual phenomena result from not one, but two366

opposing forces that yield systematic distortions on center population responses: repulsion from367

the far suppressive eCRF vs. attraction towards the near facilitatory eCRF (see Figure 2B for368

representative population response dynamics). By revealing commonalities between seemingly369

disparate perceptual phenomena, the model has helped us establish a novel taxonomy of visual370

illusions: We have found that the way in which individual stimuli activate these near and far371

eCRFs (competitively, exclusively or cooperatively; organized by columns in Figure 8) affects the372

qualitative behavior of the model.373
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A novel taxonomy of contextual phenomena374

Contextual stimuli that yield competitive activation of the near vs. far eCRFs were found for a375

set of tilt illusions including orientation (O’Toole and Wenderoth, 1977; Goddard et al., 2008),376

motion (Kim and Wilson, 1997) and hue (Klauke and Wachtler, 2015; also known as color induction).377

In these stimuli, the surround spatially overlaps with both the near facilitatory and far suppressive378

eCRFs – activating them both competitively. Because of the asymmetry between excitation and379

inhibition in the model, repulsion from the surround stimulus prevails when the center and surround380

population responses overlap, i.e., when the center and surround stimuli are perceptually similar.381

Conversely, attraction towards the surround stimulus prevails when such overlap is minimal, such382

as when the center and surround stimuli are perceptually dissimilar.383

Previous authors (Klauke and Wachtler, 2015; Goddard et al., 2008; Kim and Wilson, 1997;384

Clifford, 2014) have suggested that surround inhibition may be key to explaining the repulsive385

regime in tilt effects (see Supplementary Discussion for a more in-depth discussion). The proposed386

mechanisms, which include shifts in neural tuning curves (Klauke and Wachtler, 2015), varying387

inhibition strength depending on the relative center-surround orientation (Goddard et al., 2008), or388

recurrent center-surround interactions (Kim and Wilson, 1997) are all consistent with the proposed389

mechanistic model. In addition, the present study offers a plausible computational explanation390

for not only the existence of a repulsive regime but also an attractive one for certain classes of391

stimuli, in agreement with a host of experimental data (O’Toole and Wenderoth, 1977; Goddard392

et al., 2008; Kim and Wilson, 1997; Westheimer and Levi, 1987).393
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Another model postdiction is the absence of such attractive regime for contextual stimuli that yield394

broad-band population responses (arising because of broad neural tuning for the perceptual domain395

or because the stimulus is inherently ambiguous as in textures with little coherent orientation). For396

such stimuli, the overlap between center and surround population responses remains large even397

for maximally dissimilar center and surround stimuli, and the only discernible contextual effect is398

governed by the repulsive regime. Interestingly, the model achieves its quantitative fit for motion399

induction experiments via a broadening of neural tuning curves for motion direction compared to400

orientation, which is consistent with V1 electrophysiology data (Ringach et al., 2002; Albright401

et al., 1984) (see also Supplementary Discussion and Figure S12 for a more in-depth discussion).402

Stimuli that activate exclusively the near or the far eCRF have been used in classical induction403

experiments in the domain of depth (Westheimer and Levi, 1987) and motion (Murakami and404

Shimojo, 1996). In the model, consistent with the proposal by Murakami and Shimojo (1993),405

re-scaling a stimulus display (or similarly, varying the relative spacing between center and surround406

stimuli) yields a reversal from attraction to repulsion. A surround stimulus close to the center or407

presented at a small scale tends to predominantly activate the facilitatory near eCRF, yielding408

attraction towards the surround. A surround stimulus farther from the center or presented at a409

larger scale tends to activate the suppressive far eCRF to a greater extent, yielding repulsion away410

from the surround.411

For the last set of illusions called enhanced color shifts (Shevell and Monnier, 2005), the contextual412

(or surround) stimulus took on “opposite” optimal values in the near and the far eCRFs. As a413

result, shifts induced by either region of the eCRF tended to cooperate rather than compete with414
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one another. This resulted in a perceptual shift greater than a purely attractive effect involving only415

the near eCRF or a purely repulsive effect involving only the far eCRF. In addition, the spatial416

antagonism of the model eCRF captures the existence of an optimal spatial frequency (and phase)417

such that a cycle of the surround stimulus coincides maximally with the near and far eCRFs.418

More generally, the model confirms the consensus that assimilation predominates at higher spatial419

frequencies and finer scales whereas contrast emerges at lower spatial frequencies and coarser420

scales (Murakami and Shimojo, 1993; 1996; Monnier and Shevell, 2003; Shevell and Monnier,421

2005; White, 1979; 1981; Anstis, 2006).422

Shevell and Monnier (2005) have previously modeled enhanced color shifts through an S-cone423

color opponent model (see Supplementary Discussion). As in our model, such center-surround424

spatial antagonism results in the existence of an optimal spatial frequency. By design, their model,425

however, predicts the existence of enhanced perceptual shifts for S-cone stimuli only. One the426

other hand, our model predicts that such enhanced color shifts should persist for surround stimuli427

that do not activate S cones. We have created such stimuli (Figure S6) for the reader to judge for428

themselves but careful psychophysical work using a properly calibrated monitor will be needed to429

test this model prediction.430

We have found a further subdivision of the above taxonomy (rows in Figure 8) based on a more431

detailed characterization of the center stimulus and, in particular, whether it is ambiguous (e.g.,432

incoherently moving random dot or achromatic stimuli) or not (e.g., high-contrast gratings and433

bars, highly coherent moving random dot or saturated chromatic stimuli). Unambiguous center-surround434

stimuli yield peaked, narrow population responses (simulation results in Figure 2B-C) across the435
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visual field. The effect of the surround on a peaked center population response is to shift its center436

of mass, biasing the associated decoded value accordingly (see Supplementary Discussion for a437

discussion of the evidence of such shifts in neurophysiology studies). The shift is either towards438

(attraction) or away (repulsion) from the peak of the surround population response depending439

on whether the net effect of the eCRF is facilitatory (Figure 2B) or suppressive (Figure 2C).440

Ambiguous center stimuli yield broad-band (or even flat) center population responses (Figure 2D-E).441

These can be distorted by a peaked surround population in two ways: a bump centered at the442

surround stimulus value when tuned facilitation from the eCRF prevails (Figure 2D) or a notch at443

the surround value when tuned suppression does (Figure 2E).444

Table S2 shows how the literature fits in the proposed taxonomy. Note that some table entries are445

missing for certain visual modalities, which suggests more contextual phenomena remain to be446

found (e.g., cooperative shifts in orientation, which would result in an “enhanced orientation tilt”).447

Overall, the present study thus provides a vivid example of how computational models may help448

re-interpret results as well as summarize and integrate disparate phenomena.449

Open questions450

The neural tuning curves considered in this work (orientation, disparity, motion direction, color451

opponent) can be found in relatively low-level areas of the visual cortex, such as V1, V2 or MT.452

Thus, the consistency between model and behavioral data is all the more remarkable as many of453

the illusions studied here are likely to also involve higher-level visual processes which are known454
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to affect perception including perceptual organization and grouping (e.g., Manassi et al., 2016),455

attention and other top-down feedback (Gilbert and Li, 2013) including surface-based and other456

filling-in processes (Grossberg and Todorović, 1988). The model’s ability to account for contextual457

interactions may be limited to the relatively simple stimuli such as the bars and gratings tested458

here. We expect the model to fail to account for human data for more complex contextual stimuli459

defined by objects or shapes (e.g., Manassi et al., 2016). At the very least, a more complete460

model would likely require multiple stages of processing as well as mechanisms of filling-in and461

contour extraction (Grossberg and Todorović, 1988). Similarly, considering tuning curves found in462

higher-level areas, such as tuning to hue observed in V4/PIT neurons (as opposed to color-opponent463

V1 neurons considered here, see Conway et al., 2007) could also improve the fit with experimental464

data (though hue tuning remains controversial, see Mollon, 2009; Conway, 2009).465

More generally, the present model leaves open any role for attention. Indeed, recent work has466

shown that attention seems to be shifting both the CRF and eCRF independently towards the467

attended location (Anton-Erxleben et al., 2009). It is likely that attention (not accounted for in468

the present model) may have played a role in shaping the pattern of observed behavioral results. In469

our simulations, the CRF size was scaled to the center of the stimuli – a role that could possibly be470

endued to attention (Carandini, 2012). Indeed, one of the main mechanisms in the present model –471

that of complementary excitatory and inhibitory surround mechanisms – is a key mechanism in one472

of the leading models of spatial attention (Tsotsos et al., 2001). In this model, an annular region473

of inhibition creates a negative attentional field surrounding the region of perceptual facilitation474

centered on the attended target. In addition, modeling work has also suggested that top-down475
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influences may “gate” the effective contextual interactions mediated by long-range horizontal476

connections (Setić and Domijan, 2008).477

Anatomical data to constrain the patterns of recurrent connectivity (both within and across hypercolumns)478

in the model are scarce. The near and far eCRFs as modeled are likely to constitute, at best,479

coarse approximations for more complex patterns of anatomical connections. In particular, both480

the spatial extent and the relative strength of the near and far eCRFs relative to that of the CRF481

were held constant across experiments. Given that the experiments considered throughout spanned482

a range of visual stimuli across modalities and sizes, it is likely that these phenomena recruit neural483

populations in different cortical areas and visual eccentricities. It is also likely that variations in484

experimental factors lead to differences in how the center and surround capture attention. We thus485

expect improvements in the model’s quantitative fit by considering additional parameters to control486

the spatial extent and the relative strength of the near and far eCRFs (e.g., as done in Goddard et al.,487

2008).488

We have also left open the question of whether the connectivity in the near and far eCRFs would489

draw on slow intra-areal lateral connections or fast intra-areal feedback connections (Angelucci490

et al., 2002a;b; Shushruth and Ichida, 2009). Such lack of refinement, in addition to a lack of491

realistic modeling of excitatory and inhibitory synapses and their relative timing (Vinck et al.,492

2013), negatively impacts our ability to make predictions about the precise time course of the493

contextual effects modeled. We also expect that a resolution on the question of feedback vs. lateral494

connectivity will be needed to account for some of the electrophysiology phenomena we left aside495

in the present study including the known contrast dependence of the eCRF size (see Angelucci and496
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Shushruth, 2013; for review) or cross-orientation enhancements (Levitt and Lund, 1997; Sillito497

et al., 1995). Another hypothesis of the model that has yet to be confirmed is the existence of498

cortical columns for all visual domains beyond orientation (see Sincich and Horton, 2005; for499

review). At present, the existence of cortical columns for color (Dow, 2002), motion (DeAngelis500

et al., 1999) and binocular disparity (DeAngelis and Newsome, 1999) is only partially supported501

by neurophysiology evidence.502

We have assumed for simplicity that the near eCRF is circular (i.e., isotropic with respect to the503

topography of the visual field). There is, however, evidence for anisotropies in the pattern of504

horizontal connections between cortical columns (as orientation-tuned cells tend to be more often505

connected when they share the same selectivity and their CRFs are aligned along an axis parallel506

to their preferred orientation, see Bosking et al., 1997). There is also more direct evidence for507

anisotropies in the shape of the eCRF (i.e., various elongations over a wide range of orientations508

and widths, see Tanaka and Ohzawa, 2009). The function of these anisotropies has been attributed509

to the computation of higher-order features (including contrast- or texture-defined boundaries) as510

well as contour integration and pop-out (Stemmler et al., 1995; Hess et al., 2003; Tanaka and511

Ohzawa, 2009). Future work should test whether these phenomena can be accounted for with a512

model extension that incorporates such eCRF anisotropies.513

More generally our study did not address the role of the perceptual biases and the altered discriminability514

that arise because of surround mechanisms. It has been suggested that surround mechanisms515

could constitute one of the primary mechanisms for predictive coding and Bayesian inference516

type of computations (see Schwartz et al., 2007; for review). We speculate that the computational517
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mechanisms revealed by the contextual illusions studied here play a key role in shaping invariant518

population codes for object constancy. We have obtained preliminary results suggesting that tuned519

suppression from the far eCRF may improve the accurate decoding of surface reflectances across520

changes in illumination (i.e., color constancy; see Mély & Serre, abstract presented at the 2015521

Vision Science Society meeting), by helping to discount undesirable variations in center population522

responses caused by changes in the light source. (This is reminiscent of a color constancy algorithm523

by Land and McCann (1971) known as the Retinex.) This raises the intriguing possibility that at524

least some of the mechanisms unraveled here may support other forms of perceptual constancy525

beyond color. Further work will be needed to quantify how object transformations such as changes526

in illumination or depth affect neural population responses tuned to orientation or binocular disparity527

and what computational mechanisms are needed to help discount these nuisances. Nonetheless,528

the ability of the model to account for the variety and complexity of contextual illusions provides529

computational evidence for a novel canonical cortical circuit shared across visual modalities.530

Materials and Methods531

Additional methods may be found in Supplemental Materials and Methods.532

Model connectivity533

A column centered at location (x,y) contains a complete set of N units with CRFs centered534

at (x,y) and tuning values covering the full range θk=1...N (e.g., orientation tuning curves are535

regularly centered at values θk ∈ [0,180o]). Tuning curves are idealized – either bell-shaped for536
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disparity (Cumming and Parker, 1997), motion direction (Albright et al., 1984) and orientation (Ringach537

et al., 1997) or monotonic for color opponency (Johnson et al., 2001).538

Each unit (x,y,k) receives excitation Qxy
k , assumed to be weakly tuned and originating from within539

the same hypercolumn:540

Qxy
k = ∑

j=1...N
w jk Xxy

j s.t. w jk ∼N (θk,ς), (1)

where w jk corresponds to excitatory weights between units k and j (with selectivity θk and θ j,541

respectively) and Xxy
j to input activity at location (x,y, j). We assume these weights to be normally542

distributed, centered at a target unit tuning preference θk with standard deviation ς . Some tuning543

(albeit weak) is necessary in order to prevent intra-columnar excitation from flattening the population544

responses to well-defined stimuli. In the color domain, we consider color-opponent model units545

with monotonic tuning curves. Instead of drawing weights from a normal distribution, which only546

makes sense for bell-shaped tuning curves, we set wkk = (ς
√

2π)−1 and w jk = const. (when j 6= k;547

under the constraint that the weights sum up to r1).548

Each unit (x,y,k) also receives some inhibition Uxy, assumed to be untuned and originating from549

within the same hypercolumn:550

Uxy =
1
N ∑

j=1...N
Y xy

j , (2)

where Y xy
j is the output activity of unit j at location (x,y). Unlike the excitation which is linear,551
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inhibition is non-linear, of the shunting kind (Grossberg and Todorović, 1988), and acts on the552

output of the pre-synaptic units (Equation 5). Combined with broad tuning, this allows populations553

of cells with coinciding CRFs to be significantly driven by a common input. Such mechanism was554

used in the model by Shushruth et al. (2012) and found experimentally to be critical to reproduce555

nonlinear neural effects such as stimulus-matched surround suppression (Trott and Born, 2015).556

Because the local inhibition is untuned, its strength is independent of a unit selectivity θk, and we557

drop the subscript k for simplicity.558

Furthermore, unit (x,y,k) also receives tuned excitation Pxy
k from other units with the same selectivity559

θk that are located within its near eCRF Nxy, defined relatively to position (x,y):560

Pxy
k =

1
|Nxy| ∑

u,v∈Nxy
Xu,v

k (3)

Similarly, unit (x,y,k) also receives tuned inhibition T xy
k from other units with the same selectivity561

θk that are located within its far eCRF Fxy, defined relatively to position (x,y):562

T xy
k =

1
|Fxy| ∑

u,v∈Fxy
Y u,v

k (4)

As in Equation 2, inhibition is non-linear and acts on the output Y u,v
k of unit k at location (u,v).563
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Neural field model564

Neural field dynamics obey the following equations:565

η∂tX
xy
k + ε

2Xxy
k =

[
ξ Lxy

k − (αXxy
k +µ)Uxy− (βXxy

k +ν)T xy
k

]
+

τ∂tY
xy
k +σ

2Y xy
k =

[
γPxy

k +δQxy
k

]
+

(5)

where the feed-forward input Lxy
k drives every unit (x,y,k) across the visual field; each is represented566

by its recurrent input Xxy
k and output Y xy

k . The parameters α,β ,δ ,γ,µ and ξ can be interpreted as567

synaptic weights (see Table S1 for values used) which control the amount of intra- and inter-columnar568

excitation and inhibition (Equations 1–4). The steady-state solution is computed using numerical569

integration (with convergence typically taking∼ 50 iterations). Population responses at the steady-state570

Ȳ xy
k are a very nonlinear function of the model input Lxy

k .571

For each unit, the steady-state input and output are given by X̄x,y
k and Ȳ x,y

k , resp. Due to the572

rectifying non-linearity in the dynamics (Equation 5), at steady-state, X̄x,y
k and Ȳ x,y

k can either be573

equal to zero, or to the values below:574

X̄x,y
k =

ξ Lx,y
k −µŪx,y−ν T̄ x,y

k
ε2 +αŪx,y +β T̄ x,y

k

Ȳ x,y
k =

γP̄x,y
k +δ Q̄x,y

k
σ2 , with:

(6)
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Ūx,y =
1
N ∑

j=1...N
Ȳ x,y

j

T̄ x,y
k =

1
|Fx,y| ∑

u,v∈Fx,y
Ȳ u,v

k

P̄x,y
k =

1
|Nx,y| ∑

u,v∈Nx,y
X̄u,v

k

Q̄x,y
k = ∑

j=1...N
w j,kX̄x,y

j

(7)

Tuning curves575

The model constitutes an example of tuning curve population model (Schwartz et al., 2007; Rust576

et al., 2006). We considered two kinds of tuning curves: bell-shaped (orientation, motion direction,577

binocular disparity) and monotonic, non-saturating tuning curves (color). All tuning curves were578

normalized, i.e., the maximum unit activity was set to be equal to 1. For non-angular variables579

(e.g., disparity), bell-shaped tuning curves were parametrized as Gaussian functions:580

f (θ | θk,σ) = exp(−(θ −θk)
2

2σ2 ), (8)

with preferred stimulus value θk and tuning bandwidth σ . When the variable was circular (e.g.,581

orientation, motion direction), we modeled the tuning curve as a von Mises function instead:582

f (θ | θk,σ) = exp(
cos((θ −θk)

2π

I )−1
2σ2 ) (9)
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where I indicates the length of domain of the tuning curve (e.g., π for orientation vs. 2π for583

direction). We generally sampled on the order of 30 tuning curve centers regularly spaced in584

the domain of the considered visual modality. We found that the number of tuning curve centers585

considered did not impact our results as long as it was large enough.586

Monotonic, non-saturating tuning curves for color were derived by converting stimuli to idealized587

cone responses first, which were then mapped to opponent color channels similarly to Zhang et al.588

(2012). These included red-on/green-off (R+G−), green-on/red-off (G+R−), blue-on/yellow-off589

(B+Y−), and yellow-on/blue-off (Y+B−), alongside with a pair of luminance-sensitive channels,590

selective for lighter (Wh+Bl−) and darker (Bl+Wh−) stimuli.591

Model parameters592

All circuit parameters were held constant in all comparisons with psychophysics data. They593

were determined a priori in order to reproduce key neurophysiology data (see Supplementary594

Experiments) and were held constant for all visual modalities except color because of a qualitative595

difference in tuning curve (see Equation 1). In all subsequent experiments, only two variables were596

allowed to vary: the stimulus scale and the tuning bandwidth for model units.597

The stimuli used in psychophysics studies varied greatly – recruiting neural populations subtending598

a wide range of CRF (and eCRF) sizes and eccentricities, possibly spanning different visual areas.599

Rather than adjusting the size of the model CRFs and eCRFs for individual experiments, which600

would have required structural changes to the model, we instead varied the stimulus scale. Because601
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the connectivity between model hypercolumns was held fixed, this is somewhat akin to varying the602

magnification factor in the model. Critically, this yielded broad estimates for CRF (and eCRF)603

sizes within a biologically realistic range (from a fraction of a degree of visual angle to a couple604

of degrees). The width of the idealized tuning curves which is common to all model units was605

optimized separately for each experiment (see Supplementary Materials and Methods for details).606

We have confirmed that our key model predictions were robust over a range of these parameter607

values.608

Ideal neural observer model609

We used an ideal neural observer model to map model population responses to decoded sensory610

variables, which can then be compared to behavioral judgments collected experimentally. We used611

a population vector model (Georgopoulos et al., 1986), in which each unit votes for its preferred612

sensory value in proportion to its activity (normalized by the summed activities of all units within613

the same column). This model is not appropriate for color because of the tuning along opponent614

color pairs rather than a hue angle. Instead, we used cross-validated ridge regression to decode the615

sine and cosine of hue.616
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Figure 1. Representative contextual phenomena explained by the model. A. Orientation tilt:

The perceived center (or test) orientation appears tilted from its true physical orientation, away

from the surround (or contextual) orientation when center and surround stimuli are similar (top)

and towards the surround orientation when they are dissimilar (bottom). B. Color induction: A

central gray stimulus appears greener when embedded in a pink surround (top) compared to a

neutral gray surround (bottom). C. Enhanced color shifts: The test stimulus is a central, orange

ring, embedded in a surround stimulus composed of alternating purple and lime rings. The test

ring looks vividly more pink when the adjacent color is purple, followed by lime (top), and looks

more yellow when lime is the adjacent color, followed by purple (bottom).
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Figure 2. Recurrent network model of center-surround interactions. A. Connectivity: The

model implements excitatory and inhibitory connections both short-range (within hypercolumns)

and long-range (between hypercolumns). The regions shown in red, green and blue correspond

to the CRF, near eCRF and far eCRF, respectively (defined for the reference column in red).

Model inhibitory connections are such that the net inhibition onto a target unit is a function of

not just the pre-synaptic activity, but also the post-synaptic activity (see text for details). Color

conventions for the CRF and the near and far eCRFs are used consistently throughout the paper.

B–E. Representative model dynamics: Example population responses (32 direction-tuned model

units) following the presentation of a contextual stimulus corresponding to the initial, transitory

and steady state (rows). Population responses correspond to locations in the CRF, near eCRF

and far eCRF. Highlighted bars represent directions decoded from the corresponding populations

(undefined for flat responses); dashed lines represent initial decoded values at stimulus onset. Each

column corresponds to a representative transformation undergone by the center population under

the proposed taxonomy of contextual phenomena derived from the model: B. attractive shift, C.

repulsive shift, D. bump, E. notch. (see also Discussion and Figure 8). Abscissas span the range

[−180o,180o] and ordinates are normalized independently for readability.620
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Figure 3. Tilt effects. Competitive activation of the near vs. far eCRFs explains the shift in tilt

from one direction to the other. A. Repulsion: For similar center-surround orientations, tuned

inhibition from the far eCRF outweighs excitation from the near eCRF, which yields a net repulsive

force on the center population responses (away from that the surround orientation). B. Attraction:

For dissimilar center-surround orientations, tuned excitation from the near eCRF prevails, which

yields a net attractive force on the center population responses (towards the surround orientation).

Note that gaps between the CRF and the near and far eCRFs were added for improved readability

only and are not present in the actual model. C. Orientation tilt: Psychophysics vs. model

data. Psychophysics data were digitally extracted from Figure 4 in (O’Toole and Wenderoth,

1977) and fitted with splines. The model explains the characteristic shift from perceptual repulsion

(positive ordinates) to attraction (negative ordinates). D. Motion tilt: Psychophysics vs. model

data. Psychophysics data were digitally extracted from Figure 3 (“periphery” condition) in (Kim

and Wilson, 1997) and fitted with splines. Different colors correspond to different subjects. Both

psychophysics and model data exhibit a similar dependency on the direction difference between

center and surround, as well as a lack of an attractive regime.621
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Figure 4. Color induction (or hue tilt effect). This experiment generalizes the tilt effect to

opponent population codes. A. Repulsion: As with the classical tilt effect, the key model

mechanism behind perceptual repulsion is the tuned inhibition from the far eCRF. In this example,

the pink surround suppresses “red” center neurons, therefore reducing the “redness” of the gray

center patch yielding a shift in the perceived center hue towards green. The same explanation

also applies to chromatic center stimuli. Colored patches shown next to the eyes correspond to

the color decoded under the ideal observer. B. Psychophysics vs. model data: Psychophysics

data were digitally extracted from Figure 2 in (Klauke and Wachtler, 2015) and fitted with splines

(averaged across eight surround hues). Both model and behavioral data exhibit a characteristic

two-lobed shape peaking around ±50o. Please note the difference in ordinate scale between the

psychophysics and model data.
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Figure 5. Depth induction. The exclusive activation of either the near or far eCRFs by flankers

(as their separation vary) explains the existence of the shift from assimilation to contrast. The

perceived depth of a binocular center stimulus (at zero disparity) is affected by binocular flankers

located on either sides, presented at either crossed or uncrossed disparities. A. Attraction: For

short separations, flankers activate the near eCRF, which yields a net attractive force on the center

population responses (towards the surround disparity) corresponding to a negative perceived shift.

B. Repulsion: For larger separations, flankers activate the far eCRF, which yields a net repulsive

force on the center population responses (away from the surround disparity) corresponding to

a positive perceived shift. C. Psychophysics vs. model data: Psychophysics data were digitally

extracted from Figure 1 (upper panels) in (Westheimer and Levi, 1987) and fitted with splines. Both

behavioral and model data capture the balance between stronger attraction towards the flankers at

small separations, and weaker repulsion at larger separations. Note that the agreement between the

model and human data is only qualitative as the perceived shifts in disparity are on different scales

(the model underestimates the strength of the attractive regime in this illusion).622
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Figure 6. Motion induction. The increasing proportion of the far eCRF activated by larger stimuli

explains the shift from assimilation to contrast. A. Attraction: When the overall stimulus is

small enough, the coherently moving surround dots activate the near eCRF exclusively, leading to

motion assimilation (i.e., the center dots’ direction appears the same as that of the surround dots).

B. Repulsion: Beyond a critical size, activation of the far inhibitory eCRF prevails, which leads

to the opposite motion contrast effect (i.e., the center dots’ direction appears opposite to that of the

surround dots). C. Psychophysics vs. model data: Psychophysics data were digitally extracted

from Figure 5 and 6 (Murakami and Shimojo, 1996) and fitted with splines. Both exhibit stronger

attraction (negative ordinates) for smaller stimulus sizes, and weaker repulsion (positive ordinates)

for larger sizes. Shifts in the point of subjective equality (PSE) were used as a proxy for shifts in

perceived motion direction.
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Figure 7. Enhanced color shifts. Cooperative activation of the near and far surrounds explains

enhanced perceptual shifts. When distinct and “opposite” hues are used in a patterned surround

(or inducer), the resulting shift in color perception of a test hue (here, orange) is amplified relative

to a uniform surround of either hue. A. Shift in one direction: For the optimal spatial frequency,

one surround hue (e.g., purple) overlaps optimally with the near eCRF and the other one (e.g.,

lime) with the far eCRF. For the right color combination (as here with purple and lime which

are complementary colors), this results in cooperating perceptual forces: a shift towards purple

/ away from lime. The colored patches next to the eyes correspond to the color decoded under

the ideal observer. B. Shift in the other direction: when purple and lime are switched. C.

Psychophysics vs. model data: Psychophysics data were digitally extracted from Figure 5 (6

minutes test condition) in (Shevell and Monnier, 2005) and fitted with splines. Purple/green dots

correspond to condition A/B. ‘Uni.’ stands for a uniform inducer composed of a single hue. For

both behavioral and model data, there exists an optimal spatial frequency that maximizes the effect

in either direction.
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Figure 8. A new taxonomy of contextual phenomena. Rows: Contextual phenomena manifest

themselves in the model either as (i) shifts with peaked center population response curves

(unambiguous stimuli), or (ii) bumps/notches with broad/uniform center population response

curves (ambiguous stimuli). Columns: Center-surround stimuli activate the near and far

eCRFs in three typical ways: (i) either one separately, (ii) both competitively (i.e., near and

far eCRFs each induce shifts that tend to stymie each other; green and blue arrows, resp.),

and (iii) both cooperatively (i.e., the shifts induced by the near and far eCRFs are in the same

direction, amplifying the perceptual shift). See Table S2 for a version of this table populated with

representative psychophysics studies for each individual case.
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1 Supplementary Methods632

For all experiments, sensory variables could be read out from population responses from any633

column whose CRF overlapped with the center stimulus (in practice we used the column located634

exactly in the middle of the center stimulus). Stimuli were scaled such that the surround overlapped635

with both the near excitatory and the far inhibitory eCRF.636
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Orientation tilt637

We modeled orientation-selective units with bell-shaped tuning curves which tile the visual field.638

The tuning bandwidth was 23o. The shift in orientation perceived by the model was computed639

as the difference between the orientation decoded from the center of a stimulus, with and without640

presenting the surround stimulus.641

Motion direction tilt642

We modeled populations of motion direction selective units with bell-shape tuning. We used the643

same stimuli as in the original study by Kim and Wilson (1997), holding the direction of motion644

of the center stimulus fixed, and varying the direction of motion of the surround stimulus between645

0o and 180o. The tuning bandwidth was set to 72o. The shift in motion direction perceived by646

the model was computed as the difference between the direction decoded from the center of the647

stimulus, with and without presenting the surround stimulus.648

Hue tilt649

We considered population units based on the V1 opponent color channels described in (Zhang650

et al., 2012). Isoluminant center-surround stimuli with uniformly and independently sampled hues651

were used for both the center and surround as done in the original study by Klauke and Wachtler652

(2015). The shift in hue perceived by the model was computed as the difference between the hue653

decoded from the center of the stimulus, with and without presenting the surround stimulus.654

Instead of using a population vector model as done for the other modalities, we used cross-validated655
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ridge regression to decode the sine and cosine of hue. For training and testing, we used a dataset of656

144 colored patches uniformly sampled in the hue domain (n= 36), presented on an approximately657

isoluminant achromatic background, at two saturation levels (0.20, 0.50) and two value levels658

(0.60, 1.0). Varying those levels or adding more of them had no significant effect either on the659

results or the accuracy of the decoding. We shuffled all the stimuli and randomly excluded 20%660

of them from the training procedure for testing; accuracy on the resulting test set was always near661

perfect (well above R2 = 0.95.)662

Depth induction663

We modeled this experiment using population of units tuned to binocular disparity. We decoded664

depth from population responses centered on the test stimulus as a function of the lateral separation665

between the center stimulus and the flankers. We used stimuli similar to those used in the666

original study by Westheimer and Levi (1987), where a center line, presented at zero disparity,667

was flanked by two smaller squares, presented at crossed or uncrossed disparities. The tuning668

bandwidth was 1.15 minutes of visual angle. To assess the strength of the illusion, we used the669

“induction coefficient” measure as done in (Westheimer, 1986; Westheimer and Levi, 1987): we670

first computed the difference between the decoded disparities for the center stimulus, with and671

without presenting the flanker stimuli. We then reported that difference as a percentage of the672

difference in disparity between center and flankers.673
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Motion direction induction674

We modeled this experiment using the same stimuli and protocol as used in the original study675

by Murakami and Shimojo (1996). The tuning bandwidth was set to 57o. We measured676

the perceptual shift through the Point of Subjective Equality (PSE), i.e., corresponding to the677

coherence of the center moving dots (or center coherence) at which the model had an equal678

probability of detecting either direction of motion. For each stimulus size, estimates of the679

PSE were derived from fitted model psychometric curves, each computed across 25 trials for680

21 regularly spaced values between −100% and 100%. Similarly, we also computed the Point681

of Maximum Variance (PMV) across trials, i.e., the center coherence at which the population682

code for the center motion direction was maximally flat (ambiguous). Following the prescription683

of Ma et al. (2006), the variance of the population response curve was interpreted as a measure684

of uncertainty in the value decoded under the ideal neural observer model; i.e., narrow-band685

population response curves resulted in estimates of the sensory variable associated with high686

confidence levels, whereas wide-band or flat population response curves resulted in low-confidence687

estimates. The PMV reliably matched the PSE, so we averaged the PMV and PSE together and688

across trials to yield the final estimate of the PSE for each stimulus size.689

Enhanced color induction690

We modeled this experiment using the same stimuli as used in the original study (Shevell and691

Monnier, 2005). We used the b* axis of the CIE L*a*b* color space to measure perceptual shifts692

along the blue-yellow opponent axis, defined as the difference between the b* coordinate decoded693
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from the test stimulus and the true b* value of the test stimulus.694

2 Supplementary Experiments695

Cross-orientation normalization696

Inhibition in the CRF has long been documented through cross-orientation normalization (Heeger,697

1993; Carandini and Heeger, 1994), where the CRF response to a primary oriented grating698

may be suppressed by superimposing an orthogonal masking grating. A widely-known model699

of single-cell and population responses alike (divisive normalization, reviewed in Carandini700

and Heeger, 2012), has been successful at capturing the remarkable contrast dependency of701

cross-orientation normalization. When the two gratings are presented at approximately equal702

contrasts, the population response to the resulting plaid is best described as the average of the703

population responses to either gratings if they were presented alone (the summation regime).704

However, if the two gratings contrasts are disparate enough, the resulting population response705

looks like the response to the grating with the strongest contrast, as if the weaker-contrast grating706

was not presented (the winner-take-all regime).707

Our model, which includes untuned inhibition within the CRF, captures the balance between the708

summation vs. the winner-take-all regimes and its dependence on both gratings’ contrasts. We709

digitally extracted electrophysiology data from Figure 4A, 4E and 4G from (Busse et al., 2009) in710

Figure S2 and show the corresponding model data in Figure S3.711
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Feature-matched surround suppression712

Center-surround stimuli are widely used in neurophysiology to probe the mechanisms underlying713

surround suppression (Hubel and Wiesel, 1968; DeAngelis et al., 1994; Weliky et al., 1995; Petrov714

et al., 2005; Ozeki et al., 2009). In many studies, a cell is driven by a center grating at the715

optimal orientation; presenting a surround grating with the same orientation (or extending the716

center stimulus beyond the CRF and into the eCRF) suppresses the CRF response.717

However, since the center grating was chosen to be optimal for the recorded cell, it remains unclear718

whether the surround grating is maximally suppressive because it matches the cell’s orientation719

preference, or because it matches the orientation of the center grating. Two studies in V1 (Trott720

and Born, 2015; Shushruth et al., 2012) support the latter hypothesis, i.e., surround suppression is721

strongest when the surround stimulus matches the center in orientation, irrespective of the cell’s722

orientation preference. This excludes simpler models where a center cell is simply selectively723

targeted by tuned inhibitory connections from its surround (Schwabe et al., 2006).724

Similarly to Shushruth et al. (2012), we have found that this phenomenon is best accounted for by725

weakly-tuned recurrent excitation within an (orientation) hypercolumn. Such excitation places the726

hypercolumn in a highly recurrent regime where a cell may be driven by a stimulus at a sub-optimal727

orientation. Then, the most suppressive surround stimulus matches the center orientation because728

it withdraws most of the cell’s input.729

Our model explains neurophysiology data (digitally extracted from Figure 1B of Trott and Born730

(2015), curve labelled as “surround tuning”) for such feature-matched surround suppression (see731
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Figure S3). It also explains another experiment where the presentation of a surround grating732

selectively suppresses population responses to the identically-oriented component of a two-grating733

plaid presented in the CRF, in effect “cancelling” the contribution of the plaid component matched734

to the surround (see Figure S5).735

The necessary mechanisms of the contextual model736

Our model successfully recreated human perceptual and primate neurophysiological responses737

across a variety of contextual phenomena. This suggests that the model’s full suite of mechanisms738

are sufficient for a general explanation of contextual processing, but are they all necessary? We739

investigated this with a large-scale lesion screening procedure that identified the minimal version of740

the model. This procedure involved lesioning a mechanism in the model by setting its weights to 0,741

and then optimizing the model’s remaining free parameters for explaining contextual phenomena.742

We hereafter refer to this as the lesioning procedure. We used the lesioning procedure to separately743

measure the necessity of each of the model’s critical components. In total, we tested: (1) the744

necessity of each CRF and eCRF mechanism, (2) the validity of our assumptions about their745

spatial configurations, (3) the importance of asymmetric facilitatory vs. suppressive contributions746

for explaining contextual phenomena, and (4) the sensitivity of the model to a range of stimulus747

tuning properties and relaxed constraints on its patterns of connectivity. We performed this analysis748

on all contextual phenomena explored in the main and supplemental text except for Figure 6, which749

was excluded because its computational complexity rendered it intractable for this procedure.750

The lesioning procedure was performed separately on each component of the model. We also751
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applied the free parameter optimization routine to the full model without lesioning any of its752

components. This supported identification of what parameters most accurately explained each753

of the contextual phenomena. This procedure is equivalent to solving:754

Clesion = argmax
∀ j∈J

f (ρ j) (10)

Where Clesion is the selected model from the optimization procedure over J = 1,000 iterations755

for a specific model configuration (e.g., a model with a lesion to its far eCRF). This optimization756

is performed over hand-tuned model parameters α , β , µ , ν , γ , δ in the space of all possible757

combinations of these parameters across the perceptual phenomena discussed in the main text. ρ758

is a vector of correlation scores for a selected model configuration describing the quality of its759

simulations for each perceptual phenomenon. f is a monotonic function of ρ as follows:760

f (ρ) = µ(ρ j)/σ(ρ j) (11)

Where µ calculates the mean correlation and σ calculates the standard devation of correlations761

across perceptual phenomena for a sampled model configuration. In effect, f penalizes models762

by σ for overfitting on a subset of perceptual phenomena, making it a better method than763

simply maximizing correlation for selecting model configurations that are generally successful764

at simulating perception. Pearson correlation is desirable for this optimization procedure because765

it does not penalize irrelevant differences between model data and perceptual data, such as shifts766

of the mean and rescaling.767
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Each set of parameters applied to a model configuration was selected by searching over an768

exponentially spaced grid around each of the hand-tuned model parameters listed above. We define769

this sampling procedure S, which was applied on every iteration to each of the hand-tuned model770

parameters p discussed in the main text:771

S(p) = |p+uni f [−1,1]uni f [−2,2]| (12)

where uni f denotes uniform sampling in the specified range. The parameters that maximize Clesion772

yield optimal performance (as measured by Pearson correlation) for a lesioned version of the model773

in recreating observers’ responses across contextual phenomenon.774

While we found all model mechanisms to be necessary, we did find that the full version of the775

model was relatively tolerant to parameter perturbations caused by this optimization procedure.776

See Figure S9 for histograms of these scores. Plotting performance of the full model across these777

parameters on any particular problem revealed that the majority of them yielded simulations that778

were qualitatively similar to the perceptual data. Variations in performance potentially provide779

insight into individual differences in perception of contextual phenomena. See Figure S13 for an780

example of the qualitative variability we observed for a representative phenomenon.781

A combination of quantitative and qualitative evidence demonstrates that our model performs best782

when it contains the full suite of CRF and eCRF mechanisms. Lesioning either of the eCRF783

mechanisms (near excitation or far inhibition) diminishes the model’s ability to explain observers’784

behavior for several phenomena (Figure S8). Lesioning the near eCRF tuned excitation degrades785
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the ability of the model to explain phenomena demonstrated in Figure 3C, Figure 5, Figure 7, and786

Figure S5. Lesioning the far eCRF tuned inhibition diminishes the model explanatory power of787

Figure 3C (see also Figure S14), Figure 4, Figure 7,and Figure S5. Indeed, the full model was788

significantly better at capturing these phenomena than either lesioned version, as measured with789

2-tailed t-tests comparing the maximum correlations accrued by each model across each of the790

eight phenomena included in the lesion optimization (Full model vs. near eCRF excitatory lesion:791

t(7) = 5.102, p = 0.001; Full model vs. far eCRF inhibitory lesion: t(7) = 3.911, p = 0.006).792

Lesions to either of the model’s CRF mechanisms reveal that they were less important for793

explaining the high-level contextual phenomena discussed in the main manuscript than its eCRF794

mechanisms (Figure S7). A closer inspection of lower level phenomena, however, revealed their795

importance for explaining contrast-dependence tuning in V1. We measured responses from the796

full optimized model and versions of the model with lesioned CRF mechanisms to a stimulus that797

varied in size and contrast. Lesioning either the weakly tuned excitation or untuned inhibition CRF798

mechanisms qualitatively harmed the model’s ability to discriminate between stimuli of different799

contrasts (Figure S1). For the model with lesioned weakly tuned excitation, this is immediately800

apparent: it is qualitatively worse than the full model at discriminating stimulus contrast until the801

size of the stimulus extends into the near eCRF. For the model with lesioned untuned inhibition,802

the opposite phenomenon is observed: contrast discrimination fails as soon as the stimulus extends803

into the inhibitory far eCRF.804

Lesion optimization also highlighted the importance of our key assumption of asymmetry between805

excitation versus inhibition for explaining contextual phenomena. Excitation in the model is purely806
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additive and only depends on pre-synaptic activity. But inhibition depends on both pre- and807

post-synaptic activity and results in a combination of subtractive and divisive effects (Carandini808

and Heeger, 2012). A model with lesioned presynaptic shunting inhibition was significantly worse809

at explaining the contextual phenomena than the full model (t(7) = 2.631, p = 0.034; CRF α and810

far eCRF β , Figure S8).811

This lesion-screening framework allowed us to measure the necessity of having spatially seperate812

versus overlapping CRF and near eCRF mechanisms. We created a version of the model in which813

the influence of CRF and near eCRF mechanisms were averaged together. This configuration814

yielded significantly worse than the full model at explaining the contextual phenomena (t(7) =815

2.908, p = 0.023; Spatially overlapping CRF and near eCRF, Figure S8 ). The impact of having816

spatially distinct CRF and near eCRF mechanisms was most apparent on Figure 4A-B, Figure 5817

and Figure 7.818

We also investigated the necessity of seperate near and far eCRF regions for explaining these819

perceptual phenomena. We optimized a model with completely overlapping near and far eCRFs –820

extending from the proximal point near eCRF to the distal point of the far eCRF. The spatially821

seperate eCRFs of the full model yielded significantly better performance than this spatilly822

overlapping version at explaining contextual phenomena (t(7) = 2.552, p = 0.038; Spatially823

overlapping near eCRF and far eCRF, Figure S8).824

Having found evidence that each of the contextual model’s mechanisms are necessary to explain825

the full array of contextual phenomena, we explored its robustness to variations in the shape826
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of the model unit tuning curves. We did this over 1,000 iterations by resampling the tuning827

curve properties for each contextual phenomenon with the sampler S. For disparity (Cumming828

and Parker, 1997), motion direction (Albright et al., 1984) and orientation (Ringach et al., 1997)829

this involved resampling tuning curve bandwidth with the sampler S. For color opponent tuning830

phenomena, for which we did not assume a bell-shape tuning curve, this involved resampling the831

response threshold from a uniform distribution in [−0.5,0.5]. On every iteration of the procedure,832

we simulated each contextual phenomenon with the optimized full model after resampling its833

tuning properties. This approach revealed that, with the exception of Figure 4, the full optimized834

model was robust to a wide range of tuning properties. See Figure S11 for histograms of the835

model’s ability to explain contextual phenomena as these parameters were varied.836

The contextual model has strictly “tuned” connections from the eCRF onto the CRF, with a837

one-to-one mapping between computational units preferring the same stimulus features. We tested838

how important this constraint is to the model’s performance by relaxing this strict one-to-one839

mapping into a weakly tuned eCRF-CRF mapping (Figure S10). eCRF units in the orientation,840

motion, and disparity domains had normally distributed connectivity, centered at a target unit841

tuning preference θk with standard deviation ς . Because we consider color-opponent eCRF units842

with monotonic tuning curves in the color domain, assumptions of normality are inappropriate.843

For these phenomena we instead set wkk = (ς
√

2π)−1 and w jk = const. (when j 6= k; under the844

constraint that the weights sum up to r1). In each case the lesion screening procedure was used845

to search the extent to which eCRF unit connectivity could be weakened without destroying the846

model’s ability to simulate contextual phenomena. Model performance was recorded over 1,000847
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iterations while the standard deviation ς of these connectivity schemes was randomized with the848

sampler S (see 12 for details on the sampling procedure). For each contextual phenomenon this849

procedure yielded many successful simulations, and at times outperformed strict tuning. We expect850

that additional work on incorporating more anatomically plausible connectivity into the full model851

will yield even better performance than we report here.852

Taken together, our large-scale lesion screening procedure indicates that the mechanisms in our853

full model are not only sufficient for explaining contextual phenomena, but also necessary.854

3 Supplementary Discussion855

Neurophysiology evidence for shifts in single-cell tuning curves856

A key prediction of the model is that shifts in population responses may underlie perceptual shifts857

in phenomena as in the two regimes of the tilt effect. Several electrophysiology studies have858

provided evidence for shifts in single-unit tuning curves that matched behavioral data on perceptual859

shifts. In the motion domain, Li et al. (1999) recorded from speed-tuned neurons in V1 and found860

that the presence of a slower (faster) moving stimulus in a neuron’s eCRF shifts its preferred speed861

towards faster (slower) values. In the color domain, shifts in tuning curves that are consistent with862

color contrast where found both in V1 (Wachtler et al., 2003) and V4 (Kusunoki et al., 2006). In863

two of these studies (Li et al., 1999; Kusunoki et al., 2006), single-unit recordings were shown864

to be consistent with the animals’ behavioral responses. In the disparity domain, Thomas et al.865

(2002) recorded from single cells in monkey V2 and found that presenting stimuli with different866

disparities in their CRF and eCRF resulted in tuning curve shifts towards the disparity presented867
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in the eCRF. This behavior is consistent with the computation of relative disparity. Interestingly,868

this yields a rather counter-intuitive model prediction for the associated perception: single-cell869

tuning curve shifts towards the eCRF disparity translate, at the population level, to a shift of the870

estimated disparity in the CRF away from that of the eCRF. That is, apparent attraction at the871

level of individual tuning curves effectively corresponds to repulsion at the perceptual level; this872

paradox emphasizes the necessity for a population-level analysis to fully appreciate the perceptual873

effect of extra-classical modulation.874

Evolution of perceptual shifts as a function of population response curve bandwidths875

In the orientation and motion direction tilt effects, our model suggests that repulsive shifts happen876

when the eCRF suppresses one side of the CRF population response (“pushing” it away from its877

own mode) and that the strength of such a push grows with the overlap between these populations878

(because of the inhibition increasing with post-synaptic activity). Consistently, Goddard et al.879

(2008) have found that in the orientation tilt effect, using stimuli embedded in noise, broadening880

the orientation power of the center stimulus (yielding broader-band center population response881

curves) results in larger repulsive shifts than with narrower-band stimuli (e.g., the gratings used882

in (O’Toole and Wenderoth, 1977)).883

Figure S12 shows a prediction of the model regarding how the largest achievable repulsive shift884

should evolve as a function of the bandwidths of the center and the surround populations. For885

example, large effects are predicted when the center bandwidth is much larger than the surround886

bandwidth (up to a factor of 2), presumably because high overlap between population responses887
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from the CRF and the eCRF can then be achieved while keeping them offset from each other in the888

orientation domain (perfect alignment would result in equal inhibition on either side of the CRF889

population response curve, yielding no shift).890

Conversely, our model predicts that the attractive regime of the tilt effect can only exist when CRF891

and eCRF populations do not overlap significantly. By extension, this implies that the attractive892

regime weakens, or even disappears altogether, when typical population bandwidths are so large893

that there is no “room” left in the tuning domain for the CRF and eCRF populations to exist894

without overlapping. This is consistent with the observation that the attractive regime in the895

motion direction tilt effect is much less pronounced than in the orientation tilt effect (Figure 3), as896

neurophysiology data from V1 suggests that direction-tuned cells have a higher tuning bandwidth897

than orientation-tuned cells (Ringach et al., 2002; Albright et al., 1984).898

Surround inhibition explains perceptual repulsion899

To explain color induction, Klauke and Wachtler (2015) have proposed a phenomenological model900

based on weakly-tuned surround suppression, which reduces the gain of individual bell-shaped,901

hue tuning curves in the center. This results in center population shifts that are qualitatively902

consistent with their behavioral data. Our model thus provides computational evidence for their903

population-level explanation, using a similar form of surround suppression with sharper tuning.904

Interestingly, we show that neural populations with explicit bell-shaped hue tuning are actually905

not necessary and perceptual shifts consistent with psychophysical data can be accounted for with906

neural populations tuned to cardinal color opponency. Additionally, our experiments involving907
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visual modalities with bell-shaped tuning curves (e.g., orientation, motion direction tilt effects) also908

confirmed their intuition that tuning bandwidth controls the maximal amplitude of the perceptual909

shift.910

Goddard et al. (2008) also explains the orientation tilt effect with a computational model based911

on tuned surround inhibition. Their model also incorporates a divisive normalization term but912

lacks a realistic model of recurrent connections. In order to explain the emergence of an attractive913

regime at dissimilar orientations in the center and the surround, these authors modeled the surround914

orientation tuning curve as a “Mexican hat”, that has a positive peak around the center orientation,915

and becomes negative for values further away. This is superficially similar to the balance between916

the influences of the near and far eCRFs in our model. However, such a model assumes that917

excitatory and inhibitory influences are evenly distributed across the surround, and thus would918

fail to explain the dependence of attraction vs. repulsion on stimulus size in our second set of919

illusions. Interestingly, the authors allow the relative shape of the surround tuning curve (i.e.,920

the excitation-inhibition balance), as well as the overall strength of surround modulation, to vary921

across experiments to fit experimental data. This suggests that carefully allowing the analogues922

of these parameters in our model to vary across visual modalities may result in closer quantitative923

fits.924

Enhanced color shift effect: beyond S-cone contrast925

Monnier and Shevell (2003); Shevell and Monnier (2005) modeled enhanced color shifts through926

an antagonist CRF organization corresponds to an S-ON center (i.e., the neuron response increases927

16



with short cone activation in its center) and S-OFF surround (i.e., the neuron response decreases928

with short cone activation in its surround). Their explanation is consistent with ours: at the optimal929

spatial frequency (which exists because spatial frequency controls the overlap of the different parts930

of the stimulus with the different sub-regions of the CRF or the eCRF), the two colors present in931

the contextual stimulus create cooperative shifts in S cone activation. However, such a model does932

not predict enhanced perceptual shifts using patterned contextual stimuli that have zero contrast in933

S-cone activation; the authors report little perceptual shifts along L and M cone activations, which934

could be due to the specific stimuli they used. We rendered a simple equivalent of their stimuli935

with contextual colors that should elicit little to no contrast in S-cone activations (Figure S6E-H).936

In other words, CRFs based on S-cone activations should respond uniformly across the surround937

stimulus of this modified illusion; yet, the shift seems just as vivid (see caption for details) as with938

the original stimuli (Shevell and Monnier, 2005). Interestingly, the model reported in (Shevell and939

Monnier, 2005) to best account for behavior after parameter fitting results in a surround up to 5940

times wider than the center, and a center almost 2 times as responsive to visual stimulation as the941

surround. This seems to agree better with an eCRF model like ours, which has an inhibitory far942

eCRF that is (relatively) much wider than the OFF region of traditional center-surround CRFs.943
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parameter description value

η Input time constant 6.00

ε Input gain 0.50

ξ Afferent strength 4.50

τ Output time constant 6.00

σ Output gain 0.50

α Untuned suppression strength (divisive) 1.00

µ Untuned suppression strength (subtractive) 1.00

β Tuned suppression strength (divisive) 3.00

ν Tuned suppression strength (subtractive) 0.30

γ Tuned facilitation strength 1.00

δ Untuned facilitation strength 1.00

ς Standard deviation of tuned facilitation weights 0.15

R[Nx,y] Radius of near eCRF of (x,y) (in number of hypercolumns) 9

R[Fx,y] Radius of far eCRF of (x,y) (in number of hypercolumns) 29

Table S1. Model parameters. Hypercolumns are organized in a regularly-spaced, square grid.

Radii for near and far eCRFs are then defined in number of hypercolumns on that grid.
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Separate Competition Cooperation

Shifts Goddard et al. (2008)

(o.), Westheimer

(1986); Westheimer

and Levi (1987) (d.)

Gibson and Radner

(1937); O’Toole and

Wenderoth (1977)

(o.), Marshak and

Sekuler (1979)

(m.), Loomis and

Nakayama (1973);

Norman et al. (1996);

Baker and Graf (2010)

(s.)

Monnier and Shevell

(2003); Shevell and

Monnier (2005) (c.)

Bumps/Notches Goddard et al. (2008)

(o.), Murakami and

Shimojo (1993; 1996)

(m.)

Smith et al. (2001);

Klauke and Wachtler

(2015) (c.)

Anstis (2006) (b., c.)

Table S2. How existing psychophysics studies on contextual phenomena across modalities fit in

the proposed taxonomy. See Figure 8in the main text for a companion figure. Abbreviations: b:

brightness, c: color, d: depth, m: motion direction, o: orientation, s: motion speed.
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Figure S1. Both intra-columnar recurrent excitation and inhibition are necessary for explaining

neural contrast responses. Model response is plotted as a function of the size (x-axis) and contrast

(line color) of a stimulus. Vertical dashed lines show the spatial extent of the CRF (red) and

near excitatory (green) and far inhibitory (blue) eCRFs. All remaining model parameters were

optimized for the contextual phenomena in the main manuscript after selectively lesioning either

of the two mechanisms. Only the full model exhibits expected tuning properties: the CRF response

discriminates stimuli and reaches its peak response once stimuli expand into the excitatory near

eCRF receptive field.944
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Figure S2. Balance between summation and winner-take-all regimes during the presentation

of cross-oriented gratings. Upper plots: cat V1 electrophysiology data digitally extracted from

Figure 4A in (Busse et al., 2009). Population recordings of orientation-tuned cells in response

to the presentation of orthogonally-oriented gratings at variable contrast levels (rows indicate the

contrast of the 0o grating and columns indicate the contrast of the 90o grating). When the contrasts

of the two gratings are approximately equal, the population response is best described as the sum

of the population responses to either grating presented in isolation. When they differ markedly, the

population response is best described as the population response to the grating with the strongest

contrast presented in isolation. This latter regime is also known as a winner-take-all regime as it

seems that the response to the stronger stimulus predominates and suppresses the response to the

weaker one. Lower plots: data reproduced from Figure 4E and Figure 4G in (Busse et al., 2009).

Quality of fit of either a summation model or a winner-take-all model as a function of the contrasts

of either component grating. As before, the relative strengths of either component grating controls

the balance between summation and winner-take-all.945
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Figure S3. Balance between summation and winner-take-all regimes during the presentation

of cross-oriented gratings in the model. Using populations of orientation-tuned cells, our model

reproduces the neurophysiology data presented in Figure S2.946
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Figure S4. Feature-specific surround suppression: the most suppressive surround stimulus

matches that of the center stimulus. Top row: monkey V1 electrophysiology data digitally

extracted from Figure 1B (curve labelled as “surround tuning” in Trott and Born, 2015). Single-cell

recordings from orientation-tuned cells (averaged and normalized across cells such that 0o on the

abscissas corresponds to OP, the cell’s preferred orientation) were made using center-surround

gratings. Different center grating orientations OC were presented in the CRF. For each value of

OC, the orientation of the surround grating OS was systematically varied (abscissas). The key

result is that the most suppressive surround orientation (vertical dashed black line) always matches

the orientation of the center stimulus OC, even for non-optimal center orientations. Bottom row:

The model exhibits a similar feature-selective suppression as found experimentally.
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Figure S5. Feature-specific surround suppression: the surround stimulus suppresses the

iso-oriented component of a center plaid. Top row: monkey V1 electrophysiology data

reproduced from Figure 4 B from (Trott and Born, 2015). Population-level recordings were

made from orientation-tuned cells. A plaid was first presented in the center (with components

at orientations O1 and O2), alone. The resulting population response curves look like the averaged

population responses to the presentation of either plaid component in isolation (black curves; black

dashed lines placed at the orientation encoded by the corresponding populations; compare also to

cross-orientation normalization, Figures S2 and S3). When a surround grating with the same

orientation as one of the center plaid’s components (e.g., O2) was added to the surround, the

corresponding plaid component (e.g., O2) was selectively suppressed, resulting in a population

response tuned to the other plaid component (e.g., O1; red curves; red dashed lines corresponds to

the orientation encoded by the corresponding populations). Bottom row: The model exhibits

feature-selective suppression as well (the red dashed lines remain centered at O1, the plaid

component that does not match the surround orientation).947

26



Figure S6. Enhanced color shifts: model readout and novel predictions. A-B. Stimuli were

adapted from Figure 1 in (Monnier and Shevell, 2003). Though the test ring has the same color

in either case (orange), patterned contextual stimuli of opposite phases result in color shifts in

opposite directions. The squares in the middle of the rings represent the hue of the test ring decoded

from our model (left square) and from a CRF-only model of opponent color processing for baseline

comparison (Zhang et al., 2012; right square). The hue decoded from our model appears more

consistent with human perception. C-D. Our model explains the illusion through the cooperative

stimulation of the near and far eCRF by near-opposite hues (see main text and Figure 7), here

purple and lime. As a result, we predict that the illusion should have the same intensity when

the contextual patterned grating is replaced by two uniform regions with the right size in order

to coincide with the near and far eCRFs (compare the appearance of the test ring in C/D to that

in A/B. E-H. A previous explanation for this illusion involved a center-surround antagonism for

S-cone activity (Monnier and Shevell, 2003; Shevell and Monnier, 2005). We rendered a new

version of the illusion predicted by our model to be just as vivid as the original one, but whose

patterned context lacks S-cone contrast (colors rendered approximately; appearances may differ

on paper). Thus, whereas a S-cone antagonist model should see no difference in the appearance

of the test ring in E-H, we predict a slight difference between E-F, and a very vivid difference

between G-H.948
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Figure S7. Lesioning model CRF mechanisms mostly leaves its performance intact. We

measured the model’s ability to explain a variety of contextual phenomena (depicted along rows)

when it was intact versus when one of its CRF circuits was lesioned (depicted along columns).

Correlations between each experiment’s behavioral data and model simulations are plotted with a

Hinton diagram, where each square’s size depicts correlation magnitude and color depicts the sign

of the correlation. All correlations > 0. Model simulations follow 1000 iterations of parameter

optimization. Figure 6 is omitted because the complexity of that simulation made the parameter

search computationally intractable.949

29



O’Toole & Wenderoth, 1977

Kim & Wilson, 1997

Klauke & Wachtler, 2015

Westheimer & Levi, 1987

Shevell & Monnier, 2005

Busse et al., 2009

Trott & Born, 2015

Trott & Born, 2015

1

-1

Pearson correlation

Pairwise tests

Figure 3A

Figure 3B

Figure 4

Figure 5

Figure 7

S3

S4

S5

* * * * *

30



Figure S8. Model eCRF mechanisms are necessary for its ability to explain contextual

phenomena. We measured the model’s ability to explain a variety of contextual phenomena

(depicted along the rows) when it was intact versus when one of its circuits was lesioned

(depicted along the columns). Correlations between each experiment’s behavioral data and model

simulations are plotted with a Hinton diagram, where each square’s size depicts correlation

magnitude and color depicts the sign of the correlation. Model simulations follow 1000 iterations

of parameter optimization. Figure 6 is omitted because the complexity of that simulation made the

parameter search computationally intractable. Also note that we select the optimal model over all

experiments which is not necessarily the optimal model for any given individual experiment. Lines

and * at the bottom identify lesioned versions of the full model with correlations to perceptual data

that are significantly worse than the full model. Comparisons are made with two-tailed t-tests. All

tests shown are p < 0.05.950
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Figure S9. Distributions of fit derived from parameter optimization of the full model. Histograms

depict accuracy of the full model in explaining each contextual phenomenon as its free parameters

are randomly sampled with an exponential search grid over model parameters. Performance is

measured with Pearson correlation. Correlations are derived for each of the 1000 iterations of the

lesion-screening procedure. Correlations reported in the top left-hand corner of each panel denote

performance of the optimized full model on each problem. These values are also highlighted

with orange arrows. Figure 6 is not included because it is computationally intractable for the

lesion-screening.951
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Figure S10. Distributions of fit for the optimized full model when its strict one-to-one

CRF-eCRF connectivity is relaxed. Histograms depict the optimized full model’s ability to

explain contextual phenomena (measured by Pearson correlation coefficients between model

predictions and perceptual data) as the one-to-one connectivity of its CRF-eCRF connections are

relaxed into weakly-tuned, “many-to-many” CRF-eCRF connectivity. For orientation, motion,

and disparity phenomena, each eCRF unit had normally distributed connectivity, which was

centered at a target unit tuning preference θk with standard deviation ς . For the color domain

we consider color-opponent model units with monotonic tuning curves and set wkk = (ς
√

2π)−1

and w jk = const. (when j 6= k; under the constraint that the weights sum up to r1). The lesion

screening procedure was used to evaluate the model’s ability to explain perception across a range

of relaxed CRF-eCRF connectivity patterns. This involved randomizing ς over 1,000 iterations,

and then measuring the model’s success in simulating the contextual phenomena with each pattern

of connectivity. See 12 for details of the procedure for sampling ς . Pearson correlation values

reported in the top left-hand corner of each panel denote performance of the optimized full model

with strictly tuned connections on each problem. These values are also highlighted with orange

arrows. Figure 6 is not included because it is computationally intractable for the lesion-screening.952
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Figure S11. Distributions of fit for the optimized full model derived by varying the tuning

bandwidth of the input units’ tuning curves. Histograms depict the optimized full model’s ability

to explain perception (measured by Pearson correlations between model predictions and perceptual

data) as the shapes of its tuning curves were randomized over 1,000 iterations for each contextual

phenomenon. We explored a range of parameters around the hand-tuned values reported in the

manuscript (see Eq. 12 for sampling details). For disparity (Cumming and Parker, 1997), motion

direction (Albright et al., 1984) and orientation (Ringach et al., 1997) this involved resampling

tuning curve bandwidth. For color opponent tuning this involved resampling the response threshold

since we did not assume a bell-shape tuning curve for the modality. See 12 for details of the

sampling procedure. Note that for the color domain the sampling rangPearson correlation values

reported in the top left-hand corner of each panel denote performance of the optimized model with

tuning bandwidth optimized for each experiment. These values are also highlighted with orange

arrows. Figure 6 is not included because it is computationally intractable for the lesion-screening.953
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Figure S12. Evolution of the repulsive shift as a function of tuning curve bandwidths. We

examined how the maximal amplitude of the repulsive orientation tilt effect (Figure 3A) changes

as center and surround stimulus bandwidths are adjusted. The maximal amplitude is defined at the

largest repulsive shift that is achieved as the orientation of the surround is systematically varied

relative to the center.954
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Figure S13. Model instantiations derived from the lesion-screening procedure may account for

some of the inter-participant variability observed experimentally. Plot depicts full model behavior

of the orientation tilt effect (Figure 3C) for every combination of parameters sampled (see Eq. 12

for sampling details).955
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Figure S14. Model instantiations with lesioned eCRF or divisive normalization mechanisms are

unable to explain the orientation tilt effect. Plot depicts simulations from models with lesions

applied to either the facilitatory near eCRF (green), suppressive far eCRF (blue), or divisive

normalization (black) on the orientation tilt effect (Figure 3C) for every sampled combination

of parameters (see Eq. 12 for sampling details). Lesioning the facilitatory near eCRF destroys

the attraction regime. Lesioning the suppressive far eCRF destroys the repulsion regime. Without

divisive normalization the model is unable to balance these two regimes.956
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