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The advent of deep learning has recently led to great successes in various
engineering applications. As a prime example, convolutional neural networks,
a type of feedforward neural network, now approach human accuracy on
visual recognition tasks like image classification and face recognition. How-
ever, here we will show that feedforward neural networks struggle to learn
abstract visual relations that are effortlessly recognized by non-human pri-
mates, birds, rodents and even insects. We systematically study the ability of
feedforward neural networks to learn to recognize a variety of visual relations
and demonstrate that same–different visual relations pose a particular strain
on these networks. Networks fail to learn same–different visual relations
when stimulus variability makes rote memorization difficult. Further, we
show that learning same–different problems becomes trivial for a feedforward
network that is fed with perceptually grouped stimuli. This demonstration and
the comparative success of biological vision in learning visual relations
suggests that feedback mechanisms such as attention, working memory and
perceptual grouping may be the key components underlying human-level
abstract visual reasoning.

1. Introduction
Consider the images in figure 1a. These images were correctly classified as two
different breeds of dog by a state-of-the-art computer vision system called a
convolutional neural network (CNN) [3]. This is quite a remarkable feat
because the network must learn to extract subtle diagnostic cues from images
subject to a wide variety of factors such as scale, pose and lighting. The network
was trained on millions of photographs, and images such as these were accu-
rately categorized into 1000 natural object labels, surpassing, for the first
time, the accuracy of a human observer for the recognition of 1000 image
categories on the ImageNet classification challenge [4].

Now, consider the image in figure 1b(i). On its face, it is quite simple compared
with the images in figure 1a. It is just a binary image containing two three-
dimensional shapes. Further, it has a rather distinguishing property: both shapes
are the same up to rotation. The relation between the two items in this simple
scene is rather intuitive and obvious to human and non-human observers. In a
recent, striking example from Martinho & Kacelnik [2], newborn ducklings were
shown to imprint on an abstract concept of ‘sameness’ from a single training
example at birth (figure 1b(ii)). Yet, as we will show in this study, CNNs struggle
to learn this seemingly simple concept.

Why is it that a CNN can accurately categorize natural images while strug-
gling to recognize a simple abstract relation? That such a task is difficult or
even impossible for contemporary computer vision algorithms is known.
Previous work by Fleuret et al. [5] has shown that black-box classifiers fail on
most tasks from the Synthetic Visual Reasoning Test (SVRT), a battery of 23
visual-relation problems, despite massive amounts of training data. More
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recent work has shown how CNNs, including variants of the
popular LeNet [6] and AlexNet [7] architectures, could only
solve a handful of the 23 SVRT problems [8,9]. Similarly,
Gülçehre & Bengio [10], after showing how CNNs fail to
learn a same–different task with simple binary ‘sprite’ items,
only managed to train a multi-layer perceptron on this task
by providing carefully engineered training schedules.

However, these results are not entirely conclusive. First,
each of these studies only tested a small number of feedfor-
ward architectures, leaving open the possibility that low
accuracy on some of the problems might simply be a result
of a poor choice of model hyper-parameters. Second, while
the 23 SVRT problems represent a diverse collection of rela-
tional concepts, the images used in each problem are also
visually distinct (e.g. some relations require stimuli to have
three items, while others require two). This makes a direct
comparison among different problems challenging because
the performance of a computational model on a given
problem may be driven by specific features in that problem
rather than the underlying abstract rule. To our knowledge,
there has been no systematic exploration of the limits of
contemporary machine learning algorithms on relational
reasoning problems. Additionally, the issue has been over-
shadowed by the recent success of novel architectures
called relational networks (RNs) on seemingly challenging
visual question answering benchmarks [11].

In this study,1 we probe the limits of feedforward neural
networks, including CNNs and RNs, on visual-relation tasks.
In experiment 1, we perform a systematic performance analysis
of CNN architectures on each of the 23 SVRT problems, which
reveals a dichotomy of visual-relation problems: hard same–
different problems and easy spatial-relation problems. In
experiment 2, we introduce a novel, controlled, visual-relation
challenge called parametric SVRT (PSVRT), which we use to
demonstrate that CNNs solve same–different tasks only
inefficiently, via rote memorization of all possible spatial
arrangements of individual items. In experiment 3, we exam-
ine two models, the RN and a novel Siamese network, which
simulate the effects of perceptual grouping and attentional
routing to solve visual-relation problems. We find that the
former struggles to learn the notion of sameness and tends
to overfit to particular item features, but that the latter can
render seemingly difficult visual reasoning problems
rather trivial.

Overall, our study suggests that a critical reappraisal of
the capability of current machine vision systems is warranted.
We further argue that mechanisms for individuating objects
and manipulating their representations, presumably through

feedback processes that are absent in current feedforward
architectures, are necessary for abstract visual reasoning.

2. Experiment 1: A dichotomy of visual-relation
problems

2.1. The SVRT challenge
The SVRT is a collection of 23 binary classification problems in
which opposing classes differ based on whether or not images
obey an abstract rule [5]. For example, in problem number 1,
positive examples feature two items which are the same up
to translation (figure 2), whereas negative examples do not.
In problem 9, positive examples have three items, the largest
of which is in between the two smaller ones. All stimuli
depict simple, closed, black curves on a white background.

For each of the 23 problems, we generated 2 million
examples split evenly into training and test sets using code
made publicly available by the authors of the original
study at http://www.idiap.ch/fleuret/svrt.

2.2. Hyper-parameter search
We tested nine different CNNs of three different depths (two,
four and six convolutional layers) and with three different
convolutional filter sizes (2 ! 2, 4 ! 4 and 6 ! 6) in the first
layer. This initial receptive field size effectively determines
the size of receptive fields throughout the network. The
number of filters in the first layer was six, 12 or 18, respect-
ively, for each choice of initial receptive field size. In the
other convolutional layers, filter size was fixed at 2 ! 2
with the number of filters doubling every layer. All convolu-
tional layers had strides of 1 and used rectified linear (ReLU)
activations. Pooling layers were placed after every convolu-
tional layer, with pooling kernels of size 3 ! 3 and strides
of 2. On top of the retinotopic layers, all nine CNNs had
three fully connected layers with 1024 hidden units in each
layer, followed by a two-dimensional classification layer.
All CNNs were trained on all problems. Network parameters
were initialized using Xavier initialization [13] and were
trained using the Adaptive Moment Estimation (Adam)
optimizer [14] with a base learning rate of h ¼ 1024. All
experiments were run using TensorFlow [15].

2.3. Results
Figure 3 shows a ranked bar plot of the best-performing
network accuracy for each of the 23 SVRT problems. Bars

labrador retriever samegolden retriever

(a) (b)
(i) (ii) (i) (ii)

Figure 1. (a) State-of-the-art convolutional neural networks can learn to categorize images (including dog breeds) with high accuracy even when the task requires
detecting subtle visual cues. The same networks struggle to learn the visual recognition problems shown in (b). (b) In addition to categorizing visual objects,
humans can also perform comparison between objects and determine if they are identical up to a rotation (i). The ability to recognize ‘sameness’ is also observed
in other species in the animal kingdom such as birds (ii). (b(i)) Adapted from [1]; (b(ii)) taken with permission from Martinho & Kacelnik [2].
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are coloured red or blue according to the SVRT problem
descriptions given in [5]. Problems whose descriptions have
words like ‘same’ or ‘identical’ are coloured red. These
same–different (SD) problems have items that are congruent
up to some transformation. Spatial-relation (SR) problems,
whose descriptions have phrases such as ‘left of’, ‘next to’
or ‘touching’, are coloured blue. Figure 2 shows positive
and negative samples for each of the 23 problems (also
sorted by network accuracy from low to high).

The resulting dichotomy across the SVRT problems is
striking. CNNs fare uniformly worse on SD problems than
they do on SR problems. Many SR problems were learned
satisfactorily, whereas some SD problems (e.g. problems
20, 7) resulted in accuracy not substantially above chance.
From this analysis, it appears as if SD tasks pose a particu-
larly difficult challenge to CNNs. This is consistent with
results from an earlier study by Stabinger et al. [9].

Additionally, our search revealed that SR problems are
equally well learned across all network configurations, with
less than 10% difference in final accuracy between the worst
and the best network. On the other hand, deeper networks
yielded significantly higher accuracy on SD problems than
on smaller ones, suggesting that SD problems require a
higher capacity than SR problems. Experiment 1 corroborates
the results of previous studies which found feedforward
neural networks performed badly on many visual-relation
problems [5,8–11] and suggests that low accuracy cannot be
simply attributed to a poor choice of hyper-parameters.

2.4. Limitations of the SVRT challenge
Although useful for surveying many types of relations, the
SVRT challenge has two important limitations. First, different
problems have different visual structures. For instance,
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Figure 2. Sample images from the 23 SVRT problems. For each problem, three example images, two negative and one positive, are displayed in a row. Problems are
ordered and colour-coded identically to figure 3. Images in each problem all respect a certain visual structure (e.g. in problem 9, three objects, identical up to a scale, are
arranged in a row). Positive and negative categories are then characterized by whether or not objects in an image obey a rule (e.g. in problem 3, an image is considered
positive if it contains two touching objects and negative if it contains three touching objects). Descriptions of all problems can be found in [5].
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problem 2 (inside–outside) requires that an image contain one
large item and one small item. Problem 1 (same–different up to
translation), on the other hand, requires that an image contain
two items, identically sized and positioned without one
being contained in the other. In other cases, different
problems simply require a different number of items in a
single image (two items in problem 1 versus three in problem
9). This confound leaves open the possibility that image
features, not abstract relational rules, make some problems
harder than others. Instead, a better way to compare visual-
relation problems would be to define various problems on
the same set of images. Second, the ad hoc procedure used
to generate simple, closed curves as items in SVRT prevents
quantification of image variability and its effect on task diffi-
culty. As a result, even within a single problem in SVRT, it is
unclear whether its difficulty is inherent to the classification
rule itself or simply results from the particular choice of
image generation parameters unrelated to the rule.

3. Experiment 2: A systematic comparison
between spatial-relation and same – different
problems

3.1. The PSVRT challenge
To address the limitations of SVRT, we constructed a new
visual-relation benchmark consisting of two idealized
problems (figure 4) from the dichotomy that emerged from
experiment 1: SR and SD. Critically, both problems used
exactly the same images, but with different labels. Further,
we parameterized the dataset so that we could systematically
control various image parameters; namely, the size of scene
items, the number of scene items and the size of the whole
image. Items were binary bit patterns placed on a blank
background.

For each configuration of image parameters, we trained a
new instance of a single CNN architecture and measured the
ease with which it fit the data. Our goal was to examine how
hard it is for a CNN architecture to learn relations for visually
different but conceptually equivalent problems. For example,
imagine two instances of the same CNN architecture, one
trained on a same–different problem with small items in a

large image, and the other trained on large items in a small
image. If the CNNs can truly learn the ‘rule’ underlying
these problems, then one would expect the models to learn
both problems with more or less equal ease. However, if
the CNNs only memorize the distinguishing features of the
two image classes, then learning should be affected by the
variability of the example images in each category. For
example, when image size and item size are large, there are
simply more possible samples, which might put a strain on
the representational capacity of a CNN trying to learn by
rote memorization.

In rule-based problems such as visual relations, these two
strategies can be distinguished by training and testing the
same architecture on a problem instantiated over a multitude
of image distributions. Here, our main question is not
whether a model trained on one set of images can accurately
predict the labels of another, unseen set of images sampled
from the same distribution. Rather, we want to understand
whether an architecture that can easily learn a visual relation
instantiated from one image distribution (defined by one set
of image parameters) can also learn the same relation instan-
tiated from another distribution (defined by another set of
parameters) with equal ease by taking advantage of the
abstractness of the visual rule. Evidence that CNNs use rote
memorization of examples was found in a study by Stabinger
& Rodriguez-Sanchez [16], who tested state-of-the-art CNNs
on a type of same–different problem using a dataset of realis-
tically rendered images of checkerboards. Stabinger &
Rodriguez-Sanchez [16] found that CNN accuracy was
lower on datasets whose images were rendered with higher
degrees of freedom in viewpoint. In our study, we take a
similar approach while using much simpler synthetic
images where we can explicitly compute intra-class variabil-
ity as a function of image parameters. This way, we do not
introduce any additional perceptual nuisances such as specu-
larity or three-dimensional rotation whose contribution to
image variability and CNN performance is difficult to quan-
tify. Because PSVRT images are randomly synthesized, we
generate training images online without explicitly reusing
data, and there is no hold-out set in this experiment. Thus,
we use training accuracy to measure the ease with which a
model learns a visual-relation problem.

3.2. Methods
Our image generator produces a grey-scale image by
randomly placing square binary bit patterns (consisting of
values 1 and 21) on a blank background (with value 0). The
generator uses three parameters to control image variability: the
size (m) of each bit pattern or item, the size (n) of the input
image and the number (k) of items in an image. Our parametric
construction allows a dissociation between two possible factors
that may affect problem difficulty: classification rules versus
image variability. To highlight the parametric nature of the
images, we call this new challenge the parametric SVRT or PSVRT.

Additionally, our image generator is designed such that each
image can be used to pose both problems by simply labelling it
according to different rules (figure 4). In SR, an image is classi-
fied according to whether the items in an image are arranged
horizontally or vertically as measured by the orientation of the
line joining their centres (with a 458 threshold). In SD, an
image is classified according to whether or not it contains at
least two identical items. When k " 3, the SD category label is
determined by whether or not there are at least two identical
items in the image, and the SR category label is determined
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Figure 3. SVRT results. Multiple CNNs with different combinations of
hyper-parameters were trained on each of the 23 SVRT problems. Shown
are the ranked accuracies of the best-performing networks optimized for
each problem individually. The x-axis shows the problem ID. CNNs
from this analysis were found to produce uniformly lower accuracies on
same – different problems (red bars) than on spatial-relation problems
(blue bars). The purple bar represents a problem which required detecting
both a same – different relation and a spatial relation.
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according to whether the average orientation of the displacements
between all pairs of items is greater than or equal to 458. Each
image is generated by first drawing a joint class label for SD
and SR from a uniform distribution over fsame, differentg !
fhorizontal, verticalg. The first item is sampled from a uniform
distribution in f21, 1gm!m. Then, if the sampled SD label is
same, between 1 and k 2 1 identical copies of the first item are
created. If the sampled SD label is different, no identical copies
are made. The rest of the k unique items are then consecutively
sampled. These k items are then randomly placed in an n ! n
image while ensuring at least one background pixel spacing
between items. Generating images by always drawing class
labels for both problems ensures that the image distribution is
identical between the two problem types.

We trained the same CNN repeatedly from scratch over
multiple subsets of the data in order to see if learnability
depends on the dataset’s image parameters. CNNs were trained
on 20 million images and training accuracy was sampled every
200 000 images. These samples were averaged across the length
of a training run as well as over multiple trials for each condition,
yielding a scalar measure of learnability called ‘mean area under
the learning curve’ (mean ALC). The ALC is high when accuracy
increases earlier and more rapidly throughout the course of train-
ing and/or when it converges to a higher final accuracy by the
end of training.

First, we found a baseline architecture which could easily
learn both same–different and spatial-relation PSVRT
problems for one parameter configuration (item size m ¼ 4,
image size n ¼ 60 and item number k ¼ 2). Then, for a range
of combinations of item size, image size and number of
items, we trained an instance of this architecture from scratch.
If a network learns the underlying rule of each visual relation,
the resulting representations will be efficient at handling vari-
ations unrelated to the relation (e.g. a feature set to detect any
pair of items arranged horizontally). As a result, the network
should be equally good at learning the same problem in
other image datasets with greater intra-category variability.
In other words, the ALC will be consistently high over a
range of image parameters. Alternatively, if the network’s
architecture does not allow for such representations and thus
is only able to learn prototypes of examples within each
category, the architecture will be progressively worse at learn-
ing the same visual relation instantiated with higher image
variability. In this case, the ALC will gradually decrease as
image variability increases.

The baseline CNN we used in this experiment had four con-
volutional layers. The first layer had eight filters with a 4 ! 4
receptive field size. In the rest of the convolutional layers, filter
size was fixed at 2 ! 2 with the number of filters in each layer
doubling from the immediately preceding layer. All convolu-
tional layers had ReLU activations with strides of 1. Pooling
layers were placed after every convolutional layer, with pooling
kernels of size 3 ! 3 and strides of 2. On top of retinotopic layers,
all nine CNNs had three fully connected layers with 256 hidden
units in each layer, followed by a two-dimensional classification
layer. All network parameters were initialized using Xavier initi-
alization [13] and were trained using the Adaptive Moment
Estimation (Adam) optimizer [14] with a base learning rate of
h ¼ 1024. All experiments were run using TensorFlow [15]. To
understand the effect of network size on learnability, we also
used two control networks in this experiment: (i) a ‘wide’ control
that had the same depth as the baseline but twice as many filters
in the convolutional layers and four times as many hidden units
in the fully connected layers and (ii) a ‘deep’ control which
had twice as many convolutional layers as the baseline,
by adding a convolutional layer of filter size 2 ! 2 after each
existing convolutional layer. Each extra convolutional layer had
the same number of filters as the immediately preceding
convolutional layer.

We varied each of three image parameters separately to
examine its effect on learnability. This resulted in three
sub-experiments (n was varied between 30 and 180, while m
and k were fixed at 4 and 2, respectively; m was varied between
3 and 7, while n and k were fixed at 60 and 2, respectively; k was
varied between 2 and 6, while n and m were fixed at 60 and 4,
respectively). To use the same CNN architecture over a range
of image sizes n, we fixed the actual input image size at 180 !
180 pixels by placing a smaller PSVRT image (if n , 180) at the
centre of a blank background of size 180 ! 180 pixels. The base-
line CNN was trained from scratch in each condition with 20
million training images and a batch size of 50.

3.3. Results
In all conditions, we found a strong dichotomy in the observed
learning curves. In cases where learning occurred, training
accuracy abruptly jumped from chance level and gradually
plateaued. We call this sudden, dramatic rise in accuracy the
‘learning event’. When there was no learning event, accuracy
remained at chance throughout a training session and the ALC
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Figure 4. The PSVRT challenge. (a) Four images show the joint categories of SD (grouped by columns) and SR (grouped by rows) tasks. Our image generator is
designed so that each image can be used to pose both problems by simply labelling it according to different rules. An image is same or different depending on
whether it contains identical (left column) or different (right column) square bit patterns. An image is horizontal (top row) or vertical (bottom row) depending on
whether the orientation of the displacement between the items is greater than or equal to 458. These images were generated with the baseline image parameters:
m ¼ 4, n ¼ 60, k ¼ 2. (b – d ) Six example images show different choices of image parameters used in our experiment: item size (b), number of items (c) and
image size (d ), the size of an invisible central square in which items are randomly placed. All images shown here belong to same and vertical categories. When
more than two items are used, the SD category label is determined by whether there are at least two identical items in the image. The SR category label is
determined according to whether the average orientation of the displacements between all pairs of items is greater than or equal to 458.
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was 0.5. Strong bi-modality was observed even within a single
experimental condition in which the learning event took place
in only a subset of 10 randomly initialized trials. This led us to
use two different quantities for describing a model’s perform-
ance: (i) mean ALC obtained from learned trials (in which
accuracy crossed 55%) and (ii) the number of trials in which
the learning event never took place (non-learned). Note that
these two quantities are independent, computed from two
complementary subsets of 10 trials.

In SR, across all image parameters and in all trials, the learn-
ing event immediately occurred at the start of training and
quickly approached 100% accuracy, producing consistently
high and flat mean ALC curves (figure 5, blue dotted lines). In
SD, however, we found that the overall ALC was significantly
lower than SR (figure 5, red dotted lines).

In addition, we have also identified two main ways in which
image variability affects learnability. First, among the trials in
which the learning event did occur, the final accuracy achieved
by the CNN at the end of training gradually decreased as the
image size (n) of the number of items (k) increased. This
caused the ALC to decrease from around 0.95 to 0.8. Second,
increasing image size (n) also made the learning event decreas-
ingly likely, with more than half of the trials failing to escape
the chance level when image size was greater than 60 (figure 5,
grey bars). We call this systematic degradation of performance
accompanied by the increase in image variability the straining
effect. In contrast, increasing item size produced no visible strain-
ing effect on the CNN. Similar to SR, learnability, in terms of
both the frequency of the learning event as well as final accuracy,
did not change significantly over the range of item sizes we
considered.

The fact that straining is only observed in SD and not in SR
and that it is only observed along some of the image parameters,
n and k, suggests that straining is not simply a direct outcome of
an increase in image variability. Using a CNN with more than
twice the number of free parameters (figure 5, purple dotted
lines) or with twice as many convolutional layers (figure 5,
brown dotted lines) as a control did not qualitatively change
the trend observed in the baseline model. Although increasing
network size did result in improved learned accuracy in general,
it also made learning less likely, yielding more non-learned trials
than the baseline CNN.

We also rule out the possibility of the loss of spatial acuity
from pooling or subsampling operations as a possible cause of
straining for two reasons. First, our CNNs achieved the best over-
all accuracy when image size was smallest. If the loss of spatial
acuity was the source of straining, increasing image size should
have improved the network’s performance instead of hurting it
because items would have tended to be placed further apart
from each other. Second, as we will show in experiment 3.2, an
identical convolutional network where objects are forcibly separ-
ated into different channels does not exhibit any straining,
suggesting that it is not the loss of spatial acuity per se that
makes the SD problem difficult, but rather the fact that CNNs
lack the ability to spatially separate representations of individual
items in an image.

We hypothesize that these straining effects reflect the way the
positioning of each item contributes to image variability. A little
arithmetic shows that image variability is an exponential func-
tion of image size as the base and number of items as the
exponent. Thus, increasing image size while fixing the number
of items at two results in a quadratic-rate increase in image varia-
bility, while increasing the number of items leads to an
exponential-rate increase in image variability. Image variability
is also an exponential function of item size as the exponent
and 2 (for using binary pixels) as the base.

The comparatively weak effects of item size and item number
shed light on the computational strategy used by CNNs to solve

SD. Our working hypothesis is that CNNs learn ‘subtraction
templates’, filters with one positive region and one negative
region (like a Haar or Gabor wavelet), in order to detect the simi-
larity between two image regions. A different subtraction template
is required for each relative arrangement of items, since each item
must lie in one of the template’s two regions. When identical items
lie in these opposing regions, they are effectively subtracted by the
synaptic weights. This difference is then used to choose the appro-
priate same–different label. Note that this strategy does not
require memorizing specific items. Hence, increasing item size
(and therefore total number of possible items) should not make
the task appreciably harder. Further, a single subtraction template
can be used even in scenes with more than two items, since images
are classified as ‘same’ when they have at least two identical items.
So, any straining effect from item number should be negligible as
well. Instead, the principal straining effect with this strategy
should arise from image size, which increases the possible
number of arrangements of items.

Taken together, these results suggest that, when CNNs learn
a PSVRT condition, they are simply building a feature set tailored
to the relative positional arrangements of items in a particular
dataset, instead of learning the abstract ‘rule’ per se. If a network
is able to learn features that capture the visual relation at hand,
then these features should, by definition, be minimally sensitive
to the image variations that are irrelevant to the relation. This
seems to be the case only in SR. In SD, increasing image variabil-
ity lowered the ALC for the CNNs. This suggests that the
features learned by CNNs are not invariant rule detectors, but
rather merely a collection of templates covering a particular
distribution in the image space.

4. Experiment 3: Is object individuation needed
to solve visual relations?

Our main hypothesis is that CNNs struggle to learn visual
relations in part because they are feedforward architectures
which lack a mechanism for grouping features into individu-
ated objects. Recently, however, Santoro et al. [11] proposed
the relational network (RN), a feedforward architecture
aimed at learning visual relations without such an indivi-
duation mechanism. RNs are fully connected feedforward
networks which operate on pairs of so-called ‘objects’
(figure 6; for concision, we will refer to a neural network
consisting of a CNN feeding into an RN as just an RN).
These objects are simply feature columns from all retinotopic
locations in a deep layer of a CNN, similar to the feature
columns found in higher areas of the visual cortex [17].
These feature vectors will sometimes represent parts of the
background, incomplete items or even multiple items
because the network does not explicitly represent individual
objects. This makes the ‘objects’ used by an RN rather differ-
ent from those discussed in the psychophysical literature,
where perceptual objects are speculated to obey gestalt
rules like boundedness and continuity [18]. Santoro et al.
[11] emphasize that their model performed well even
though it employs this highly unstructured notion of object:
‘A central contribution of this work is to demonstrate the
flexibility with which relatively unstructured inputs, such
as CNN or LSTM [long short-term memory] embeddings,
can be considered as a set of objects for an RN.’

In particular, the RN was able to outperform a baseline
CNN on the ‘sort-of-CLEVR’ challenge, a visual question-
answering task using images with simple geometric items
(see figure 7a for examples of sort-of-CLEVR items).
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In sort-of-CLEVR, scenes contain up to six items, each of
which has one of two shapes and six colours. The RN was
trained to answer both relational questions (e.g. What is the
shape of the object that is furthest from the grey object?) and
non-relational questions (e.g. Is the red object on the top or
bottom of the scene?).

However, the sort-of-CLEVR task suffers from three
important shortcomings. First, the number of possible
items is exceedingly small (6 colours ! 2 shapes ¼
12 items). Combined with the fact that the authors used
rather small (75 ! 75) images, this means the total
number of sort-of-CLEVR stimuli was rather low, at least
compared with PSVRT stimuli. The small number of
samples in sort-of-CLEVR might have encouraged the RN
to use rote memorization instead of actually learning
relational concepts. Second, while the authors trained the

RN to compare the attributes of scene items (e.g. How many
objects have the same shape as the green object?), they did not
examine if the model could learn the concept of sameness,
per se (e.g. Are any two items the same in this scene?). Detecting
sameness is a particularly hard task because it requires
matching all attributes between all pairs of items. Third,
sort-of-CLEVR stimuli are not parameterized as they are in
PSVRT; one cannot systematically vary image features
while keeping the abstract rule fixed. Thus, it is difficult to
say whether the success of RNs arises from their ability to
flexibly learn relations among arbitrary objects (as is hypoth-
esized for humans [19]) or rather their ability to fit particular
image features.

Crucially, without a parameterized dataset, it is difficult
to evaluate the authors’ claim regarding the efficacy of ‘rela-
tively unstructured’ objects in visual reasoning problems.
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Figure 5. Mean area under the learning curve (ALC) over PSVRT image parameters. ALC is the normalized area under a training accuracy curve over the course of
training on 20 million images. Coloured dots are the mean ALCs of learned trials (trials in which validation accuracy exceeded 55%) out of 10 randomly initialized
trials. Shaded regions around the coloured dots indicate the intervals between the maximum and the minimum ALC among learned trials. Grey bars denote the
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(red), wide CNN control on SD ( purple) and deep CNN control on SD (brown)) are plotted, and each combination is explored over three image variability parameters:
item size, image size and number of items.
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Since the objects used by RNs are simply feature columns,
they have a fixed receptive field. Thus, the success of RNs
on sort-of-CLEVR might be due to felicitously sized and
arranged items instead of actual relational learning. For, if
image features are allowed to parametrically vary, such
spatially rigid representations might fail to correctly encode
individual objects whenever, for instance, multiple, small
and tightly arranged items fall within the same receptive
field or when a large, irregularly shaped item spans multiple
receptive fields.

Our goal in experiment 3 was to re-evaluate relational
networks on sort-of-CLEVR when these handicaps are
removed. To that end, we performed three sub-experiments.
First, we trained RNs on a bona fide same–different task
using versions of sort-of-CLEVR missing certain colour–
shape combinations in order to see if the model would
over-fit to training item attributes (see [20] for a similar dem-
onstration in a different visual reasoning problem). Such
over-fitting would indicate that the RN merely memorizes
particular item combinations instead of learning abstract
rules. Second, we tested an RN on PSVRT in order to evaluate
the ease with which the model can fit data when scene items
systematically vary in appearance and arrangement. As in
experiment 2, we measured the mean ALC in order to see
if the RN’s object representations alleviated the straining
found in CNNs.

Finally, we compared the performance of the RN on
PSVRT with that of an idealized model using ground-truth
object individuation. Our new model is a ‘Siamese’ network
[21] which processes each scene item in a separate (CNN)
channel and then passes the processed items to a single clas-
sifier network. This model simulates the effects of attentional
selection and perceptual grouping by segregating the
representations of each item. Unlike an RN, whose object
representations may in fact contain no items, multiple items
or incomplete items, object representations in the Siamese
network contain exactly one item.

4.1. Methods
4.1.1. Sub-experiment 3.1: Relational transfer to novel attribute

combinations
Here, we sought to measure the ability of an RN to transfer the
concept of sameness from a training set to a novel set of objects,
a classic and very-well-studied paradigm in animal psychol-
ogy (see [22] for a review) and thus an important benchmark
for models of visual reasoning. We used software for relational
networks publicly available at https://github.com/gitlimlab/
Relation-Network-Tensorflow. Like the original architecture
used by Santoro et al. [11], our RN had four convolutional
layers with ReLU non-linearities and batch normalization.
We used 24 features for each convolutional layer, fewer than
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Figure 6. A comparison between a relational network and the proposed Siamese architecture. (a) A relational network ((a), top half ) is a fully connected, feedfor-
ward neural network which accepts pairs of CNN feature vectors as input. First, the image is passed through a CNN to extract features. Every pair of feature
activations (‘objects’) at every retinotopic location in the final CNN layer is passed through the RN. The outputs of the RN on every pair of activations is then
summed and passed through a final feedforward network, producing the decision. Depending on the spatial resolution of the final CNN layer and the receptive
field of each unit, the object representations of an RN may correspond to a single scene item, multiple items, partial items or even the background. (b) In contrast,
objects in our Siamese network are forced to contain a single item. First, we split stimuli into several images, each containing a single item. Then, each of the
images is passed through a separate CNN (here, channel 1 and channel 2), producing a representation of a single object. These objects are then combined by
concatenation into a single representation and passed through a classifier. The network simulates the effects of the attentional and perceptual grouping processes
suspected to underlie biological visual reasoning (see Discussion).
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those used by [11], but sufficient for good training accuracy.
These convolutional layers were followed by two four-layer
multi-layer perceptrons (MLPs), both with ReLU non-
linearities. These MLPs had 256 features each, again fewer
than those in [11], but sufficient for fitting the data. The final
classification layer had a softmax nonlinearity and the whole
network was optimized with a cross-entropy loss using an
Adam optimizer with learning rate h ¼ 1024 and mini-batches
of size 64. The original authors did not report receptive field
sizes or strides. Our RN used receptive field sizes of 5 ! 5
throughout the convolutional layers and had strides of 3 in
the first two convolutional layers and strides of 2 in the next
two. There was no pooling. We confirmed that this model
was able to reproduce the results from [11] on the sort-of-
CLEVR task.

We constructed 12 different versions of the sort-of-CLEVR
dataset, each one missing one of the 12 possible colour!
shape attribute combinations (see figure 7a). Images in each
dataset only depicted two items, randomly placed on a
128 ! 128 background. Half of the time, these items were the
same (same colour and same shape). For each dataset, we
trained the RN architecture to detect the possible sameness
of the two scene items while measuring validation accuracy
on the left-out images. We then averaged training accuracy
and validation accuracy across all of the left-out conditions.

4.1.2. Sub-experiment 3.2: Relational networks on PSVRT
For this experiment, we trained an RN on our experiment 2
with PSVRT stimuli, and observed whether the straining effect
found in CNNs was alleviated in RNs. For this sub-experiment,
we used the exact architecture from sub-experiment 3.1, but
increased the number of units to the original values from [11]
in order to give the RN the best possible chance of learning
the very difficult PSVRT task. The convolutional layers had
32, 64, 128 and 256 features, the first MLP had 2000 units in
each layer, and the final MLP had 2000, 1000, 5000 and 100
units in its four layers. We focused only on same–different
learning and only varied the image size from 30 to 180 pixels
since this produced the strongest straining effect in CNNs.
Item size was fixed at 4 and the number of items was fixed at
2. We trained on 20 million images, using 10 randomly initia-
lized trials. As in experiment 2, we measured the mean ALC

as well as the number of non-learned trials. Before training
on the whole spectrum of image sizes, we ensured that the
RN was capable of fitting the data when item size was 4 and
image size was 60.

4.1.3. Sub-experiment 3.3: The need for perceptual grouping and
object individuation

Here, we introduce a Siamese network which processes scene
items individually in separate CNN ‘channels’ (figure 6b).
First, we manually split each PSVRT stimulus into several
images, each of which contained a single item. These
images were then individually processed by two copies of
the same network (mimicking, in a sense, the process of
sequentially attending to individuated objects). For example,
if one stimulus contained two objects in the original PSVRT,
our new stimulus would be presented to the Siamese net-
work as two separate images. The scene items retained
their original location in each image so that item position
varied just as widely as in the original PSVRT. These
images were then individually processed by each CNN
channel, using the same architecture as in experiment
2. This resulted in two object-separated feature maps in the
topmost retinotopic layer (figure 6b). These feature maps
were then concatenated before being passed to the fully
connected classifier layers.

This Siamese configuration is essentially an idealized
version of the kinds of object representations resulting from
psychological processes such as perceptual grouping and
attentional selection. Because convolutional layers in this con-
figuration are now constrained to process only one object at a
time, regardless of the total number of objects presented in an
image, the network can completely disregard the positional
information of individual objects and only preserve
information about their identities under comparison.

4.2. Results
4.2.1. Sub-experiment 3.1: Relational transfer to novel attribute

combinations
In the sort-of-CLEVR transfer task, we found that the RN
does not generalize on average to left-out colour–shape
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Figure 7. (a) Sample items used during training and testing in experiment 3. We trained relational networks (RNs) on 12 two-item same – different datasets each
missing one colour – shape combination from sort-of-CLEVR (2 shapes ! 6 colours). Then, we tested the model on the left-out combination. The top and middle rows of
panel (a) show two possible pairs of items when the left-out combination is ‘cyan square’. Row 1 shows a cyan circle and row 2 shows a green square. However, only in
the test set is the model queried about images involving a cyan square (e.g. the ‘same’ image in row 3). Note that, during training, the model observes each left-out
attribute, just not in the left-out combination. (b) Averaged accuracy curves of an RN while being trained on the sort-of-CLEVR datasets missing one colour – shape
combination. The red curve shows the training accuracy. The blue dashed line shows the accuracy on validation data with the left-out items.
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attribute combinations (figure 7). Since there are only 11
colour–shape combinations in any given set-up, the model
did not need to learn to generalize across many items. As a
result, the RN learned orders of magnitude faster than the
CNNs in experiment 2; for example, average training accu-
racy (solid red) exceeded 80% within 50 000 examples.
However, while the average training accuracy curve rose
rapidly to around 90%, the average validation accuracy
remained at chance. In other words, there was no transfer
of same–different ability to the left-out condition, even
though the attributes from that condition (e.g. cyan square)
were represented in the training set, just not in that
combination (e.g. cyan circle and green square; figure 7a).

4.2.2. Sub-experiment 3.2: Relational networks on PSVRT
We found that the RN exhibits a qualitatively similar strain-
ing effect to increasing image size (figure 8, pale blue
dotted lines). Similar to CNNs in experiment 2, the mean
ALC of learned trials gradually decreased as image size
increased, together with the observed likelihood of learning
out of 10 restarts. Since the top retinotopic feature vectors
that are treated as ‘object representations’ in RN have rather
large, fixed and highly overlapping receptive fields, the RN
is strained just as easily as regular CNNs. In order to accom-
modate this fixed architecture, the RN must learn a dictionary
of features that captures all arrangements of items for a given
image size condition. This is an increasingly difficult feat as
the image size grows, straining the model heavily until it
simply cannot learn at all in the final condition (image size
180 ! 180).

4.2.3. Sub-experiment 3.3: The need for perceptual grouping and
object individuation

The mean ALC curves for the Siamese network on PSVRT were
strikingly different from those of the CNN in experiment 2
(figure 8, first and second rows). Barely any straining effect
was observed on the SD task, and the model learned within
5 million examples across all image size parameters in either
the SD or SR tasks. In SD, since objects are individuated by
fiat, the network need not learn all possible spatial arrange-
ments of items. The network must simply learn to compare
whichever two items reach the classifier layers through the
two CNN channels. This greatly simplifies the SD problem,
alleviating straining. In both SD and SR, the Siamese network
can learn to flexibly represent the task-relevant properties of
each object such that learnability is not at all influenced by
image variability. In other words, a feedforward network,
once endowed with object individuation, can easily construct
invariant feature representations with which arbitrary objects
can be related.

This result implies that object individuation makes visual
relation detection a rather trivial problem for feedforward
networks. In informal experiments (data not shown) we
found that even very shallow Siamese networks (e.g. with
one convolutional layer) could still learn SD much faster
than baseline CNNs. Naturally, we do not intend our
Siamese network as a bona fide solution to visual reasoning,
but rather as a proof of the efficacy of object individuation in
visual reasoning problems. A genuine visual reasoning
model would be able to dynamically select and group
features in the scene (see Discussion section).

5. Discussion
Recent progress in computational vision has been significant
[23]. Modern deep learning architectures can discriminate
between 1000 object categories [3] and identify faces among
millions of distractors [24] at a level approaching—and
possibly even surpassing—that of human observers.
While these neural networks do not aim to mimic the
organization of the visual cortex in detail, they are at
least partly inspired by biology. Modern deep learning
architectures are indeed closely related to earlier hierarch-
ical models of the visual cortex albeit with much better
categorization accuracy (see [25,26] for reviews). Further,
CNNs have been shown to account well for monkey infer-
otemporal data [27] and human lateral occipital data
[28,29]. In addition, deep networks have been shown to
be consistent with a number of human behaviours includ-
ing rapid visual categorization [30,31], image memorability
[32], typicality [33] as well as similarity [34] and shape
sensitivity [35] judgements.

Concurrently, a growing body of literature has been high-
lighting key dissimilarities between current deep network
models and various aspects of visual cognition. One promi-
nent example is adversarial perturbation [36], a type of
structured image distortion that asymmetrically affects
CNNs and humans. Although barely perceptible to a
human observer, adversarial perturbation renders an image
unrecognizable to a CNN, even though the same CNN can
correctly recognize the unperturbed image with high confi-
dence. Another example is the poor generalization of CNNs
in conditions that pose no difficulty to human observers,
such as learning novel object categories with minimal super-
vision or when the parts of a familiar object are shown in
unfamiliar but realistic configurations [37–39]. Direct
evidence for qualitatively different feature representations
used by humans and CNNs was shown in [40,41].

The present study adds to this body of literature by
demonstrating feedforward neural networks’ fundamental
inability to efficiently and robustly learn visual relations.
Our results indicate that visual-relation problems can quickly
exceed the representational capacity of feedforward net-
works. While learning feature templates for single objects
appears tractable for modern deep networks, learning feature
templates for arrangements of objects becomes rapidly intract-
able because of the combinatorial explosion in the requisite
number of templates. That notions of ‘sameness’ and stimuli
with a combinatorial structure are difficult to represent with
feedforward networks has long been acknowledged by
cognitive scientists [42,43].

Compared with the feedforward networks in this study,
biological visual systems excel at detecting relations. Fleuret
et al. [5] found that human observers are capable of learning
rather complicated visual rules and generalizing them to
new instances from just a few training examples. Partici-
pants could learn the rule underlying the hardest SVRT
problem for CNNs in our experiment 1, problem 20, from
an average of about six examples. Problem 20 is rather
complicated as it involves two shapes such that ‘one shape
can be obtained from the other by reflection around the perpen-
dicular bisector of the line joining their centers’ ([5], fig. S26,
suppl. p. 27). In contrast, the best performing CNN model
for this problem could not get significantly above chance
from 1 million training examples.
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This failure of modern computer vision algorithms is all
the more striking given the widespread ability to recognize
visual relations across the animal kingdom. Previous
studies showed that non-human primates [44,45], birds
[2,46], rodents [47] and even insects [48] can be trained to
recognize abstract relations between training objects and
then transfer this knowledge to novel objects. Contrast the
behaviour of the ducklings in [2] with the RN of experiment
3, which demonstrated no ability to transfer the concept of
same–different to novel objects (figure 7) even after
hundreds of thousands of training examples.

There is substantial evidence that visual-relation detec-
tion in primates depends on re-entrant/feedback signals
beyond feedforward, pre-attentive processes. It is relatively
well accepted that, despite the widespread presence of feed-
back connections in our visual cortex, certain visual
recognition tasks, including the detection of natural object
categories, are possible in the near absence of cortical feed-
back—based primarily on a single feedforward sweep of
activity through our visual cortex [49]. However, psycho-
physical evidence suggests that this feedforward sweep is
too spatially coarse to localize objects even when they can
be recognized [50]. The implication is that object localiz-
ation in clutter requires attention [51]. It is difficult to
imagine how one could recognize a relation between two
objects without spatial information. Indeed, converging
evidence [19,52–56] suggests that the processing of spatial

relations between pairs of objects in a cluttered scene
requires attention, even when individual objects can be
detected pre-attentively.

Another brain mechanism implicated in our ability to
process visual relations is working memory [57–60]. In
particular, imaging studies [57,58] have highlighted the role
of working memory in prefrontal and pre-motor cortices
when participants solve Raven’s progressive matrices which
require both spatial and same–different reasoning.

What is the computational role of attention working
memory in the detection of visual relations? One assumption
[19] is that these two mechanisms allow flexible represen-
tations of relations to be constructed dy namically at run-time
via a sequence of attention shifts rather than statically by
storing visual-relation templates in synaptic weights (as
done in feedforward neural networks). Such representations
built ‘on-the-fly’ circumvent the combinatorial explosion
associated with the storage of templates for all possible
relations, helping to prevent the capacity overload that
plagues feedforward neural networks.

Humans can easily recognize when two objects are the
same up to some transformation [1] or when objects exist
in a given spatial relation [5,19]. More generally, humans
can effortlessly construct an unbounded set of structured
descriptions about their visual world [61]. Mechanisms in
the visual system such as perceptual grouping, attention
and working memory exemplify how the brain learns and
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handles combinatorial structures in the visual environment
with small amount of experience [62]. However, exactly
how attentional and mnemonic mechanisms interact with
hierarchical feature representations in the visual cortex is
not well understood. Given the vast superiority of humans
over modern computers in their ability to detect visual
relations, we see the exploration of these cortical mechan-
isms as a crucial step in our computational understanding
of visual reasoning.
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Endnote
1A shorter version [12] of this paper is to appear in the proceedings of
the 40th Annual Conference of the Cognitive Science Society.
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