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Definition

Hierarchical models of the visual system are neu-
ral networks with a layered topology. The recep-
tive fields of units (i.e., the region of visual space
to which units respond) at one level of the hierar-
chy are constructed by combining inputs from
units at a lower level. After a few processing
stages, small receptive fields tuned to simple stim-
uli get combined to form larger receptive fields
tuned to more complex stimuli. Such an anatom-
ical and functional hierarchical architecture is a
hallmark of the organization of the visual system.
In feedforward networks, information flows in a
bottom-up fashion – from lower to higher pro-
cessing stages. In feedback networks, information

is able to dynamically reenter processing stages
via recurrent connections. Feedback connections
can be broadly divided between horizontal or
lateral connections within processing stages and
top-down connections from higher onto lower
processing stages.

Since the pioneering work of Hubel andWiesel
(1962), a variety of hierarchical models have been
proposed, from relatively small-scale models of
the primary visual cortex to very large-scale
(system-level) models of object and action recog-
nition, which account for visual processing in
entire visual streams. The term “model of the
visual system” is generally reserved for architec-
tures that are constrained in some way by the
anatomy and the physiology of the visual system
(with various degrees of realism). Deep
convolutional networks are architecturally similar
neural networks that have led to impressive results
in a wide range of engineering disciplines, from
computer vision to natural language processing,
and artificial intelligence more broadly.

Detailed Description

The feedforward flow of visual information in the
ventral stream of the visual cortex is carried by
ascending projections from the retina, through the
lateral geniculate nucleus (LGN) of the thalamus
to the primary visual cortex (V1) and extrastriate
visual areas, V2 and V4, and culminating in the
inferotemporal (IT) cortex. In turn, IT provides a
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major source of input to the prefrontal cortex
(PFC), which is involved in linking perception to
memory and action (see DiCarlo et al. 2012, for
review). A single feedforward pass through the
visual cortex rapidly produces a coarse image
representation sufficient for rapid object classifi-
cation. Evolutionarily, such rapid feedforward
processing might have been enabled the split-
second detection of predators necessary for sur-
vival (Thorpe et al. 2001).

The function of feedback/recurrent connec-
tions are less well understood. By “feedback,”
we mean those connections which carry informa-
tion either from a higher to a lower cortical area
(top-down feedback) or within a cortical area
(lateral or horizontal feedback). Top-down feed-
back is mediated by descending projections
connecting, for example, V2, V4, and IT to V1
or V1 to LGN (see Pennartz et al. 2019, for a
review). These descending projections generally
outnumber ascending ones. It is speculated that
feedback serves primarily to modulate rather than
drive activity in lower areas (Gilbert and Li 2013).
Accordingly, circuits with recurrent connections
have been implicated in the dynamic maintenance
of image representations via attention and work-
ing memory (Gazzaley and Nobre 2012) and other
modulatory processes (Lamme et al. 1998;
Angelucci and Shushruth 2013; Gilbert and
Sigman 2007).

The goal of hierarchical models of the visual
cortex is to explain how cortical anatomy and
physiology, particularly the hierarchical arrange-
ment of visual areas, give rise to complex visual
behaviors including object recognition. Such
models can be broadly classified into feedforward
and feedback varieties and have their origin in
computational neuroscience, where biological
realism is the primary concern. Recently, how-
ever, computer vision models, notably deep
convolutional neural networks (CNNs), have
emerged as the best predictors of neural activity
(see Serre (2019) for a review), despite their being
largely unconstrained by biology.

First, we will provide an overview of
feedforward hierarchical models of the visual cor-
tex. One of the primary objectives of these models
is to explain rapid visual categorization (see Serre

(2016) for a review). Consequently, feedforward
hierarchical models must address the ability of
feedforward cortical pathways to extract features
which are both selective for natural object recog-
nition and invariant to irrelevant image transfor-
mations, including pose and illumination. The
balancing of these two factors is sometimes called
the “invariance-selectivity” trade-off (Geman
2006). Second, we will turn to feedback models
of visual processing. These network models seek
to explain how an initial, coarse feedforward rep-
resentation can be dynamically manipulated with
executive, mnemonic, and other processes.
Finally, we will briefly discuss the problem of
learning in hierarchical models.

Feedforward Hierarchical Models

Feedforward hierarchical models of the visual
system have a long history starting with Marko
and Giebel (1970)’s homogeneous multilayered
architecture and later Fukushima (1980)’s neo-
cognitron. One of the key principles in the neo-
cognitron and other modern hierarchical models
originates from the pioneering physiological stud-
ies and models of Hubel and Wiesel (1962). In
these networks, the receptive fields of units at one
level of the hierarchy are constructed by combin-
ing inputs from units at a lower level. Numerous
feedforward models of the ventral stream of the
visual system have been described since the neo-
cognitron to account for the organization and the
neurophysiology of the ventral stream of the
visual cortex. These models can be coarsely
divided into conceptual proposals (Biederman
1987; Perrett and Oram 1993; Hochstein and
Ahissar 2002) and neurobiological models (e.g.,
Wallis 1997; Mel 1997; Riesenhuber and Poggio
1999; Ullman et al. 2002; Thorpe 2002; Amit and
Mascaro 2003; Wersing and Koerner 2003; Serre
et al. 2007; Masquelier and Thorpe 2007). Similar
hierarchical models have also been proposed to
explain motion processing in the dorsal stream of
the visual cortex (e.g., Simoncelli and Heeger
1998; Grossberg et al. 1999; Perrone and Thiele
2002; Giese and Poggio 2003; Rust et al. 2006;
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Jhuang et al. 2007; Pack and Born 2008; Mineault
et al. 2012).

Somewhat independently, convolutional neu-
ral networks (CNNs) and other deep learning
architectures have been developed in computer
vision (see LeCun et al. 2015, for review).
CNNs typically involve two processing stages: a
feature extraction stage, in which visual informa-
tion is passed through layers of computing units
having small receptive fields, and a classification
stage, in which the resultant features are combined
by “fully connected” units having global receptive
fields. In the most common computer vision set-
ting, the parameters of these models are gradually
adjusted by the backpropagation algorithm to
minimize classification error on a large data set
of labeled images. After supervised training, the
network approximates a function from the space
of natural images to a set of discrete object labels.
These neural networks do not mimic the organi-
zation of the visual system in detail, but biology is
often cited as a source of inspiration, and they
nevertheless provide a better fit to experimental
data than earlier biological models (Yamins
et al. 2014).

Modeling of feedforward pathways in the
visual cortex begins with the description of pri-
mary visual cortex by Hubel and Wiesel (1962).
Hubel and Wiesel famously described two func-
tional classes of cortical cells: simple cells, which
respond to oriented stimuli (e.g., bars, edges, grat-
ings) at particular orientations, and complex cells,
which, while also tuned to oriented stimuli, tend to
have larger receptive fields and exhibit some tol-
erance to the exact position of the stimulus within
their receptive fields. AV1-like circuit is shown in
Fig. 1, which connects a complex cell to an array
of simple cells tuned to the same feature at neigh-
boring locations.

Though such models help to explain the basic
invariance properties of key neural circuits, they
do not explain the careful balance of invariance
and selectivity needed to solve the problem of
natural object recognition. To understand the lim-
itation of these circuits more clearly, consider the
following classic example of Geman (2006)
(Fig. 2). A collection of simple cells are tuned to
vertical bars. One subset, S1, of these cells feeds

into complex cell, C1, and an overlapping subset,
S2, feeds into complex cell C2. One of the pur-
posed functions of complex cells in the visual
system is the gradual introduction of invariance,
since, for example, C1 and C2 will be as active
when presented with two bars in the configuration
of Fig. 2a as they will when presented with the
configuration of Fig. 2b. In other words, the acti-
vation patterns of C1 and C2 cannot distinguish
between a broken and a continuous line. This
problem generalizes: a V1-like circuit consisting
of a few face features with tolerance to small
translations will tend to detect faces (Geman
2006) even when it should not (Fig. 2c vs. 2d).
Such a circuit appears to be insufficient to fully
achieve selective and invariant object recognition.

Contemporary feedforward models of the
visual cortex partially resolve this “invariance-
selectivity” dilemma by introducing further,
“deeper,” processing stages, each with numerous
learned filters. These models are an extension of
the Hubel and Wiesel’s circuit from V1 to higher
areas of the ventral stream. They come in numer-
ous forms, differing in their specific wiring and
neuronal operations. However, common to most
of these network models are three key ingredients:
(1) a cascade of linear filters each followed by
(2) a pointwise nonlinearity which introduces tol-
erance to noise and (3) gradual, intermittent
max/average pooling for translation invariance
(see Mallat 2016, for a theoretical justification of
these three parts). The result is an architecture
which gradually builds hierarchical compositions
of visual features up to and including natural
objects. Such a feature hierarchy is depicted for
the case of Hmax, a classical hierarchical model of
visual processing (Riesenhuber and Poggio 1999;
Serre et al. 2007), in Fig. 3.

A general wiring diagram of a feedforward
model of the visual system is shown in Fig. 4.
A layer of simple cells is conceived as a bank of
feature detectors, each selecting for one of
K different features within a local neighborhood
centered at spatial location, u, in the layer’s input
(see Ullman and Soloviev 1999, for a discussion
of the biological realism of this architecture). Each
simple cell computes a weighted sum of afferent
unit activities,
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y kð Þ
u ¼

X
v�Ou

w kð Þ
v xv, ð1Þ

where k indexes the particular feature to which the
simple cell is tuned, Ou are the locations of affer-
ent units in the input pool, xv are those units’
activities, and wv are the synaptic weights

connecting each afferent to the simple cell target.
The scalar y kð Þ

u is analogous to an average firing
rate of the simple cell. Since feature detectors are
replicated at each spatial location, the output of a
simple cell layer can be modeled as a convolution
of the afferent signal, x, with a bank of features

w kð Þ� �K
k¼1

of small support:

Hierarchical Models of the Visual System,
Fig. 1 Hubel and Wiesel model. (a) Receptive field
(RF) of a simple cell (lower green cell) obtained by selec-
tively pooling over afferent center-surround cells (upper
green cells) aligned along a preferred axis of orientation
(vertical shown here). (b) At the next stage, a complex cell
(lower green cell) RF can be obtained by selectively
pooling over afferent simple cells (upper green cells) with

the same preferred orientation (vertical). Shown here is a
complex cell RF obtained by pooling over position to build
tolerance to translation of the preferred stimulus, but a
more complete model of a complex cell would also include
pooling over simple cells tuned to slightly different spatial
frequency and phases (Rust et al. 2005; Chen et al. 2007).
(Modified from Hubel and Wiesel (1962))

Hierarchical Models of the Visual System, Fig. 2 The
invariance-selectivity trade-off. Two complex cells C1
and C2 pool over overlapping sets of simple cells tuned to
vertical bars. Being translation invariant, the cells respond
identically to the broken bars in (a) as they to the contin-
uous bar in (b). Similarly, a collection of complex cells

tuned to face parts may erroneously detect a full face (c) if
facial components are subject to small translations (d). See
Geman (2006) for details. Arguably, the visual system
avoids these false alarms for thousands of fine-grained
object categories while remaining invariant to irrelevant
image nuisances, like illumination, contrast, and pose.
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y kð Þ ¼ w kð Þ⋆x:

The pattern of activations y(k) for a given k is
called a feature map (Fig. 4, red rectangle). Note
that we have written the output of a layer of simple
cells as a 2D convolution, though, in general, the
summation can be taken across many dimensions,
including time, input channels, eye
dominance, etc.

The vector y kð Þ
u

� �K
k¼1

for a fixed location, u, is

called a hypercolumn (Fig. 4, green prism) and
represents an encoding of the afferent activity
with respect to the features {w(k)}. In the primary
visual cortex, these local descriptors are well
modeled by Gabor wavelets (as shown in RF1 in
Fig. 4), tuned to different orientations and scales,
and these filters often emerge in models trained on
natural images, especially when activity in the
network is encouraged to be sparse (Olshausen
and Field 1996; Lee et al. 2008). Iteratively com-
bining the supports of filters throughout the hier-
archy which feed into a given unit yields its
receptive field; e.g., in Fig. 4, the shaded region
RF2 is the union of receptive fields of its afferent
units inO. Comparing the size of RF1 and RF2, we
see that iterative pooling in this manner gradually
increases the size of receptive fields as one pro-
ceeds up the feature hierarchy.

The output of a simple cell layer is typically
passed through a pointwise nonlinearity, r, called
an activation function in order to provide some
robustness to noise and increase the expressive-
ness of the visual representation:

by kð Þ ¼ r y kð Þ
� �

¼ r w kð Þ⋆x
� �

:
ð2Þ

Typical choices for r include rectification,
logistic, or hyperbolic functions. The standard
choice in computer vision for r is zero rectifica-
tion. In this context, a scalar bias, b, on the output
of a simple cell layer functions as a spiking thresh-
old, since yu=max(0, (w�x)u� b)> 0 only when
(w�x)u> b. A model neuron which passes a linear
combination of its afferents through a pointwise

Classification
units

PIT/AIT

V4/PIT

V2/V4

V1/V2

Hierarchical Models of the Visual System,
Fig. 3 Sketch of the Hmax hierarchical model of visual
processing. Acronyms: V1, V2, and V4 correspond to
primary, second, and fourth visual areas and PIT and AIT
to posterior and anterior inferotemporal (IT) areas, respec-
tively (tentative mapping with areas of the visual cortex
shown in color, parietal cortex and dorsal stream not
shown). The model relies on two types of neural opera-
tions: a max-like pooling operation (shown in dash circles)
over similar features at different positions and scales to
gradually build tolerance to affine transformations and a
convolution (also called tuning) operation (shown in plain
circle) over multiple features to increase the complexity of
the underlying representation. Since it was originally
developed Riesenhuber and Poggio (1999), the model
was shown to explain a number of new experimental data
(see Serre and Poggio 2010, for a review). However, today
this model and similar architectures have been superseded
by deep convolutional networks that have been shown to
provide a better fit to neural data along the ventral stream of
the visual cortex (Serre 2019)
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nonlinearity is called a linear-nonlinear
(LN) neuron (Simoncelli et al. 2004). The LN
model has been shown to account for a host of
experimental data (Rieke et al. 1997), and it has
been shown that in many cases, biophysically
more realistic, spiking neuron models can be
reduced to a simple LN cascade (Ostojic and
Brunel 2011).

Extensions of the LN cascade include the addi-
tion of a normalization stage (Heeger 1993;
Carandini and Heeger 1994), in which the
response yu of the neuron is divided by a factor
that typically includes the summed activity of a
pool of neurons:

Hierarchical Models of the Visual System,
Fig. 4 Feedforward wiring diagram. Hierarchical
models of the visual system are characterized by multiple
stages of processing whereby units in one stage (shown as
squares) pool over the response of units from the previous
stage. Each stage computes a convolution of the previous
stage with a bank of K filters, and a unit’s activity is the

output of this convolution at a given location. The convo-
lution with a given filter is called a feature map (e.g., the
outputs of cells in the red square). The set of feature
activations at a given location is called a hypercolumn.
The output of a layer is passed through a pointwise non-
linearity and max or average pooling, after which it forms
the input for another bank of filters. See text for details
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yu ¼

P
v�Ou

wvxvð Þp

ϵþ P
v0 �O0

u

xqv0

 !r , ð3Þ

where ϵ � 1 is a constant to avoid zero-division.
The pool of neurons O0

u used for normalization
may correspond to the same pool of neurons Ou

which shape the classical receptive field or may
extend beyond to account for extra-classical
receptive field effects (Series et al. 2003). Nor-
malization circuits were originally proposed to
explain the contrast response of cells in the pri-
mary visual cortex and are now thought to operate
throughout the visual system and in many other
sensory modalities and brain regions (see
Carandini and Heeger 2012, for a review).

Complex cell layers filter their input with a
fixed low-pass or max filter, the latter of which is
the standard in computer vision. If a max-pooling
unit at location u receives input from a pool of
afferent units Ou, then the unit outputs

yu ¼ max
v�Ou

xvf g, ð4Þ

where x is itself usually the activity of a simple
cell layer. Interestingly, maximum, Gaussian, sig-
moid, and other types of cell tuning can all be
approximated by various forms of Eq. 3
depending on the values of the static nonlinear-
ities p, q, and r in the underlying neural circuit. By
adjusting these nonlinearities, Eq. 3 can approxi-
mate better a maximum or other tuning functions
(see Kouh and Poggio 2008, for details).

While recent work has suggested that simple
and complex cells may represent the two ends of a
continuum instead of two discrete classes of neu-
rons (see Ringach (2004) for a discussion), this
dichotomy is probably not critical for hierarchical
models of the visual system. Indeed, some com-
putational models do not distinguish between sim-
ple and complex cell pooling (O’Reilly
et al. 2013).

Deep convolutional neural networks with an
architecture similar to that of Fig. 4 have achieved
impressive results in image classification, by
some measures surpassing human performance

(He et al. 2015). Many of the most powerful
contemporary networks are “ultra-deep,”
extending the linear-nonlinear cascade to hun-
dreds or even thousands of layers (He et al.
2016). Often, these models are only superficially
deep, as they employ “skip” connections to
bypass several layers, similar to the ascending
projections from V2 to IT or V1 to V4
(Nakamura et al. 1993). During training, these
“residual networks” (He et al. 2015) essentially
learn to adjust their processing depth to best suit a
given task. For example, imagine that pairs of
linear-nonlinear stages are grouped into blocks
indexed by t, so that the output of the tth block is
given by the nonlinear operator At:

Atx ¼ r wt,2⋆r wt,1⋆xð Þð Þ, ð5Þ

where wt,1 and wt,2 are two kernels of synaptic
weights interleaved by pointwise nonlinearities.
Skip connections add the input to this operator to
the output: Atx + x. Suppose that the true function
to be learned by this block is F (x). In an ultra-deep
system, the optimal function for this block may
very well be the identity map, F(x) = x. Bypass
connections in residual nets (Fig. 5a) accelerate
the learning of these identity maps since they
allow the training algorithm to alternatively learn
zero “residual” functions

F xð Þ � x ¼ Atx: ð6Þ

After training, many of the At will have con-
verged to the zero operator, allowing data to
essentially skip a layer as the network performs a
feedforward pass.

Despite being unconstrained by neurophysiol-
ogy, currently the best feedforward models of
visual cortical activity are deep convolutional net-
works developed by the computer vision commu-
nity. Early computational neuroscience work
started with AlexNet (Krizhevsky et al. 2012)
and ZFNet (Zeiler and Fergus 2014), which were
shown to improve the fit to neural data in inter-
mediate and higher areas of the ventral stream of
the visual cortex even if they were optimized for
task performance (e.g., image classification
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accuracy) instead of neural prediction directly
(Cadieu et al. 2014; Khaligh-Razavi and
Kriegeskorte 2014). A recent study (Cadena
et al. 2019) has shown that intermediate layers
from the VGG network of Simonyan and
Zisserman (2014) provide a better fit to V1 mon-
key electrophysiology data compared to simpler
linear-nonlinear models. Work by Hong et al.
(2016) has also shown that multiple image prop-
erties beyond object categories (e.g., object posi-
tion, 3D size, and pose) remain relatively well
encoded in higher processing stages in both neural
and CNN representations. This provides further
evidence that visual hierarchies are able to learn
visual representations that are invariant to task-
irrelevant transformations while maintaining
information for task-relevant ones.

Further evidence for hierarchical processing in
object recognition comes from studies that have
shown that the depth of convolutional layers that
provides the best goodness of fit with brain data
increases along the ventral visual stream (Cichy
et al. 2016; Devereux et al. 2018; Guclu and van
Gerven 2015; Kalfas et al. 2017; Khaligh-Razavi
and Kriegeskorte 2014; Yamins et al. 2014). Sim-
ilar results were also reported for scene

recognition (Cichy et al. 2017; Greene and
Hansen 2018) and action recognition (Güçlü and
Gerven 2017) with spatiotemporal CNNs trained
for action recognition (Tran et al. 2015). Interest-
ingly, the goodness of fit between brain data and
fully connected layers tends to be lower than with
convolutional layers (Kalfas et al. 2017), a result
consistent with a behavioral study that has com-
pared CNNs with human behavioral decisions
during a rapid categorization task (Eberhardt
et al. 2016). This result also seems consistent
with a recent object naming study (Devereux
et al. 2018) that has shown that a network model
of semantics, explicitly trained to learn a mapping
from the convolutional layers of a CNN onto
object semantic attributes, was better able to
explain functional magnetic resonance imaging
(fMRI) activation patterns in higher visual areas
compared to either convolutional or fully
connected layers. CNNs have also been used to
synthesize patterns of fMRI activations, which
were then used to reproduce classic functional
brain-mapping experiments, from recovering
retinotopic maps in early visual areas to replicat-
ing the known faces-versus-places BOLD con-
trast in higher areas (Eickenberg et al. 2017).

Hierarchical Models of the Visual System,
Fig. 5 Residual and recurrent circuits. (a) A residual
net contains skip connections that allow a copy of activity
x to bypass the tth block of layers, here encoded in the
operator At. The copied activity, x, is then added to the
output of the bypassed layers, Atx, in the hopes that the
model will more easily learn that the At operator is often the

zero operator. (b) A recurrent circuit runs in time and
updates its persistent state by integrating incoming infor-
mation: yt = Atyt � 1 + xt. (c) A residual net can be
reformulated as a particular recurrent network (Liao and
Poggio 2016), where the tth residual block is the state of
the recurrent circuit at time t.
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Recurrent Models

To date, most existing hierarchical models of
visual processing – from the perspectives of both
biological and machine vision – are instances of
feedforward models (Serre 2019). These models
have been useful in exploring the power of fixed
hierarchical organization as originally suggested
by Hubel and Wiesel (1962). However, the limi-
tations of feedforward networks, in terms of their
correspondence to both cortical function and anat-
omy, are becoming increasingly obvious. For
example, convolutional networks can be easily
tricked into incorrectly detecting objects in ways
that biological vision cannot, either by placing
familiar objects in unfamiliar arrangements
(Fig. 6a; see Rosenfeld et al. (2018)) or even by
adding minute perturbations to images (Szegedy
et al. 2013; Geirhos et al. 2018). Evidently, deep
feedforward nets have not fully resolved the
invariance-selectivity dilemma and its attendant
high false alarm rate. These networks also strug-
gle to learn simple visual reasoning tasks which
are trivial for humans, notably those in which
arbitrary objects must be compared (Fig. 6b; see
Kim et al. 2018). This limitation suggests
feedforward models of the visual system cannot
easily emulate humans’ ability to flexibly con-
struct innumerable structured descriptions of the
visual world (Fodor and Pylyshyn 1988; Geman
et al. 2015). Naturally, feedforward models do not
help explain the copious feedback and lateral con-
nections in the visual cortex or the executive and
mnemonic processes they support. Contemporary
CNNs can also have hundreds of processing
stages, counting skip connections, whereas the
ventral stream contains a dozen or fewer. In fact,
the classification accuracy of feedforward net-
works begins to decorrelate with human behavior
after a few layers (Eberhardt et al. 2016).

Could the functional and anatomical limita-
tions of feedforward models of the visual system
be connected? Geman (2006), for instance, claims
that selectivity in natural vision arises not from the
learning of a large dictionary of complex visual
features but rather from the dynamical construc-
tion of representations out of simple parts using
recurrent connections. Recent work in recurrent

neural networks (RNNs) has partially corrobo-
rated this intuition and shown that models with
feedback connections are both functionally supe-
rior to feedforward networks on some tasks
(Linsley et al. 2018) and better predictors of cor-
tical activity (Nayebi et al. 2018; Kar et al. 2019).

An RNN is built from circuits with cyclical
connections. For example, if xt is a signal at time
t, then such a circuit could compute

yt ¼ Atyt�1 þ xt, ð7Þ

where At is a potentially nonlinear, time-
dependent operator (Fig. 5b). yt is a persistent or
hidden state of the circuit which accumulates
information from xt over time. An additional oper-
ator can provide a readout or classification layer:
ot = Btyt. The principal advantage of networks
built from these circuits is that the system can
perform stateful computations based on the infor-
mation stored in the persistent activity yt. For
example, given a memory-data combination,
(yt, xt), a network could learn to sequentially sup-
press or enhance different regions of the visual
field, giving rise to exactly the kind of attentional
mechanisms capable of disambiguating a
cluttered scene (Treisman and Gelade 1980;
Evans and Treisman 2005), as in Fig. 6a, or
detecting the relations in Fig. 6b (Donderi and
Zelnicker 1969; Clevenger and Hummel 2014).

Importantly, a version of the dynamical system
in Eq. 7 is equivalent to the ultra-deep residual
networks discussed above. If x = x0, xt = 0 when
t> 0, y0= 0, and we consider the circuit in Fig. 5c
with operator At + I, then we find

y1 ¼ A1 þ Ið Þ0þ x0 ¼ x

y2 ¼ A2 þ Ið Þy1 þ 0 ¼ A2xþ x

y3 ¼ A3y2 þ y2

⋮

We observe that the operator At corresponds to
the function embodied by blocks in a residual
network, so that the tth block in the hierarchy is
also the tth sequential operation in the recurrent
circuit of Fig. 5c. In other words, an ultra-deep
residual network can be “folded” into a shallow

Hierarchical Models of the Visual System 9



recurrent circuit (see Liao and Poggio 2016, for
details). This suggests that the relatively shallow
visual cortex could match the performance of
ultra-deep feedforward systems by using recurrent
connections through time.

Contemporary recurrent models of the visual
cortex elaborate on the basic RNN structure by
hierarchically stacking recurrent circuits, intro-
ducing lateral connections within a layer and
top-down connections between layers, and allo-
wing the system to gate activity. This last opera-
tion, known primarily for its use in long short-
term memory (LSTM) networks (Hochreiter et al.
1997) and, later, gated recurrent units (GRUs)
(Cho et al. 2014) for natural language processing,
enables a network to selectively delete and append
information to its persistent state. Linsley et al.
(2018) recently developed a recurrent network
model with lateral connectivity and gating to
mimic the contour integration and object segmen-
tation capabilities of humans in cluttered scenes
(Grossberg and Mingolla 1985; Field et al. 1993;
Grossberg and Raizada 2000; Grossberg and
Williamson 2001). Further, Nayebi et al. (2018)
and Kar et al. (2019) found that convolutional

networks augmented with recurrent connections
had improved performance in image classification
and could predict recordings of primate ITactivity
better than a feedforward baseline. These attempts
to model the visual system with recurrent net-
works are promising, though this line of research
is still in its infancy compared to feedforward
modeling.

Learning

Modeling the visual system with recurrent net-
works is a tantalizing proposition, since RNNs
are Turing-equivalent and can therefore theoreti-
cally compute any function given enough time
(Hyötyniemi 1996). This is to say nothing of
how this function is learned, however. Learning
is the domain where differences between compu-
tational and biological models are at their starkest.
In particular, CNNs are typically trained by super-
vision with gradient descent on millions of labeled
images, whereas training in the visual system
likely occurs by some combination of
unsupervised and reinforcement learning.

Hierarchical Models of the Visual System,
Fig. 6 Limitations of feedforward models. (a)
A feedforward model can be trained to high accuracy on
hundreds of object classes, and yet the resulting network
still misclassifies objects when placed in unfamiliar
arrangements. Here, the YOLO object recognition and
localization deep network (Redmon et al. 2016) mistakes
a penguin for a cat because of a partially occluding guitar.

(See Rosenfeld et al. (2018) for a systematic analysis of
this effect; image credit: Junkyung Kim.) (b) Kim et al.
(2018) found that feedforward models could easily solve
spatial reasoning problems, like determining whether two
random patterns are arranged vertically or horizontally
(vertical axis), but had a comparatively more difficult
time solving same-different tasks such as determining
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Differences with biological vision seem all the
greater in light of recent evidence indicating that
face preference (Reid et al. 2017), category selec-
tivity (van den Hurk et al. 2017), and basic rea-
soning (Martinho and Kacelnik 2016) can require
little to no visual experience to function properly.

Even the basic mechanisms of error propaga-
tion seem difficult to implement in a biologically
plausible manner. Backpropagation of error has
traditionally been considered biologically unreal-
istic since it would seem to require that
feedforward connections be mirrored by identical
feedback connections. Any mechanism for com-
puting error in cortex would have to know the
weights of the feedforward pathway, a dilemma
known as the “weight transport” or “weight sym-
metry” problem (Grossberg and Mingolla 1987).
However, Liao et al. (2015) found that
feedforward and feedback weights need not be
symmetric for successful training as long as the
network was trained with batch normalization
(Ioffe and Szegedy 2015) and the magnitudes of
gradient updates were discarded. Further, Bengio
et al. (2015) argues that spike-timing-dependent
plasticity (STDP; see Sjöström and Gerstner
(2010)) is equivalent to gradient descent for a
particular variational algorithm.

Though these results assuage some fears about
basic error propagation in the cortical setting, they
do not address the implausibility of direct super-
vision. A complete computational model of the
visual system will have to integrate the
feedforward and feedback mechanisms discussed
above with methods from unsupervised learning,
for example, predictive coding (Rao and Ballard
1999). See Marblestone et al. (2016) for an exten-
sive review on the neuroscientific implementation
of deep learning algorithms.

Cross-References

▶Deep Learning Network
▶ Feedforward Network
▶Recurrent Network
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