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Abstract

Nearly all models for object tracking with artificial neu-
ral networks depend on appearance features extracted from
a “backbone” architecture, designed for object recognition.
Indeed, significant progress on object tracking has been
spurred by introducing backbones that are better able to
discriminate objects by their appearance. However, exten-
sive neurophysiology and psychophysics evidence suggests
that biological visual systems track objects using both ap-
pearance and motion features [1]. Here, we introduce Path-
tracker, a visual challenge inspired by cognitive psychol-
ogy, which tests the ability of observers to learn to track
objects solely by their motion. We find that standard 3D-
convolutional deep network models struggle to solve this
task when clutter is introduced into the generated scenes,
or when objects travel long distances. This challenge re-
veals that tracing the path of object motion is a blind spot of
feedforward neural networks. We expect that strategies for
appearance-free object tracking from biological vision can
inspire solutions these failures of deep neural networks.

1. The Pathtracker Challenge

We introduce a novel synthetic visual tracking challenge,
called Pathtracker. The challenge, inspired by the multi-
object tracking paradigm of cognitive psychology [13, 3], is
designed to test the ability of observers to learn to track an
object in the presence of clutter over long distances (Fig. 1).
Pathtracker joins a growing body of work which uses vi-
sually simple challenges, inspired by cognitive science, to
identify limitations of feedforward models and inspire solu-
tions that push the state of the art in computer vision [8, 9].

The goal of Pathtracker is to determine whether or not a
“target” dot starting on a red marker travels to a blue “fin-
ish” marker. These two markers are stationary and placed
at random positions in each video. The target and distractor
dots are white squares that follow procedurally-generated
trajectories (Fig. 2; see §2 for details). In positive exam-

Figure 1: A positive example from the Pathtracker chal-
lenge. The target dot starts from inside the red marker on
the first frame, and ends inside the blue marker on the last
frame. In this example, there are 6 distractor dots, which are
identical to the target and follow random trajectories (see
Fig. 2; note that the number of distractors is a free parame-
ter that we vary in our benchmarks). The first three frames
show the path of the target dot that began inside the red
square, denoted by yellow arrows (these annotations are not
visible in the challenge). All moving objects are identical,
making it impossible to distinguish the target and distrac-
tors by appearance. Thus, observers must track the target
from the first frame until the end of the sequence.

ples, the target dot finishes its trajectory in the blue marker
at the end of the video. In negative examples, a distractor
dot, finishes its trajectory on the blue marker, while the tar-
get dot ends up somewhere else.

In the most basic version of Pathtracker, observers have
to track the target over a 32-frame video, while ignoring a
single distractor. The task is made harder by increasing (i)
the number of distractors, (ii) the length of the video, or
(iii) the speed of the target and distractors. Increasing the
number of distractors makes it more likely that target and
distractors cross – requiring an observer to distinguish be-
tween identical objects and bind identity with motion trajec-
tories. Gestalt principles such as the principle of continuity
may provide robust cues to solve such challenge but it is
unknown whether modern feedforward neural networks are
capable of learning such spatiotemporal features.

2. Stimulus design

Challenge videos consist of 32, 64 or 128 frames of
32× 32 pixels. Target and distractor trajectories are curved
and variably shaped. On two successive frames, the dis-
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Figure 2: A diagram of dot motion for a positive versus a
negative video in the Pathtracker challenge. Motion is plot-
ted by superimposing the frames in each video and coloring
the trajectories of the targets and distractors. In the positive
example on the left, the target dot starts inside red marker
(a) and ends inside the blue marker (b). The target’s path
is colored in blue, whereas distractor paths are colored in
yellow/red. In the negative example on the right, the target
dot starts inside red marker (a) but a distractor dot (d) ends
inside the blue marker (b). The target dot instead ends at
an arbitrary location (c). The target often crosses paths with
distractors, forcing observers to handle occlusion in individ-
ual frames and making it difficult for neural architectures to
learn shortcut solutions to the challenge.

placement between the coordinate positions of the dot is
constrained to be not more than 2 pixels and to not bend
more than 20◦. This means that all dots look like they are
meandering through the scene, never turning at acute an-
gles. Start (red) and finish (blue) markers are placed at the
starting and ending positions of the target in positive exam-
ples. In negative examples, these markers are placed at the
start of the target and the end of a randomly selected dis-
tractor. Targets and distractors move at the same speed in
all videos. In our challenge we produce videos with one
of three possible speeds: normal, fast, or very fast. Tar-
gets and distractors traverse longer trajectories as speed is
increased, but for every speed the target always ends in the
finish marker on positive examples, and a distractor ends in
the finish marker on negative examples.

3. Benchmark Models: 3D-CNNs
Fiaz et al. [6] noted that deep learning-based tracking

algorithms rely on appearance: they use the correlation be-
tween appearance-based feature maps of successive frames
to track target objects. More recent methods have shown
incremental improvements by using this same approach on
object-proposals from instance segmentation models ap-
plied to individual frames [2]. The number of deep network
architectures that can be used for appearance-free video
processing are fairly limited. Although tracking is a well
studied subfield in computer vision, to our knowledge there

Table 1: I3D evaluation accuracy on variable length Path-
tracker datasets of “normal” speed.

Video Dimension (D,H,W)
Distractors 32,32,32 64,32,32 128,32,32
1 93.88 81.29 58.20
6 86.90 67.39 56.40
15 83.59 65.13 56.55
26 81.03 64.29 56.06

Table 2: I3D evaluation accuracy on Pathtracker datasets
with variable dot speed. Dots travel longer distances when
speed is increased above “normal”. We generated “fast” and
“very fast” versions of Pathtracker videos, in which dots
traveled 2× or 4× their normal distance, respectively. We
set the maximum path length to be consistent with dot path
length in the 128-frame videos; hence, we do not generate
“very fast” versions of the 64×32×32 datasets. See §2 for
details on speed variations.

Video Dimension (D,H,W)
Dist. 32,32,32 32,32,32 64,32,32 128,32,32
Speed Fast Very Fast Fast Normal
1 81.50 59.82 59.79 56.66
6 68.13 55.56 57.30 56.40
15 63.04 55.40 56.12 56.54
26 62.89 51.10 51.62 50.81

are no deep learning-based methods for “feature agnostic”
tracking based on motion.

We focus our experiments on Inception 3D (I3D) net-
works [4], which are a standard approach to action recog-
nition in natural videos. We split Pathtracker dataset into
separate train/test folds, and perform a large-scale search
over I3D hyperparameters to optimize its performance. In
total, we explore the following hyperparameters: (i) ran-
dom weight initializations vs. pretrained Kinetics initializa-
tions, (ii) learning rates of {1× 10−4, 3× 10−4, 1× 10−5,
1 × 10−6}, and (iii) L2 weight decay scaled at {4 × 10−5,
1 × 10−6}. All models were trained for 1000 epochs on
batches of 64 videos. Here, we report best performance
across our hyperparameter search. (See section S1 in sup-
plementary materials for details of our experiments with hy-
perparameter search.)

Every variant of Pathtracker had 20K training and 20K
test samples. Models were trained on TPUs and evalu-
ated on versions of the challenge with different numbers
of distractors, frames, and speeds. We also include experi-
ments where I3D was trained on optic flow encodings of the
datasets (see supplementary material).
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4. Results
I3D performed well on a 1-distractor, 32-frame version

of mixed-channel version of Pathtracker dataset (Fig. 1),
reaching 93% accuracy. However, I3D’s performance
monotonically decreased as clutter and tracking length in-
creased (Table 1). Indeed, we found a sharp drop in I3D’s
performance for 64-frame videos when more than one dis-
tractor was included (see the drop from 1→ 6 in Table 1).
I3D also struggled to learn the task, even when only a single
distractor was present, in longer 128-frame videos.

We further found that I3D struggled to learn Pathtracker
when we increased the speed of dots in the videos. I3D was
unable to break 60% accuracy when dots moved “very fast”
in a 32-frame video or “fast” in a 64-frame video (see Table
2).

One possible explanation why I3D struggled in so many
conditions of the Pathtracker challenge is that it was ei-
ther over- or under-parameterized, which caused unstable
learning. To address this, we repeated our experiments with
wider and narrower I3D networks, containing 4× and 1

4 th
the number of features as the original model.
Narrower Network: We reduced the feature maps on all
but readout layers to 1/4th of their original size. We ob-
served a monotonic decrease in accuracy, as in case of orig-
inal feature maps. We observe a 4-5% increase in accuracy
on the datasets with path lengths corresponding to a 128-
frame task and 26 distractors. Accuracy on other datasets
remain constant. See tables 3 and 4 for constant and vari-
able speed experiments respectively.

Table 3: Evaluation accuracy of I3D with narrower network
with variation in the number of frames.

Video dimension (D,H,W)
Distractors 32,32,32 64,32,32 128,32,32
1 dist 92.53 80.44 56.71
6 dist 84.58 64.45 56.80
15 dist 80.11 64.19 56.18
26 dist 79.10 63.28 55.70

Table 4: Evaluation accuracy of I3D with narrower net-
work with variable speed datasets, compared to the longer
constant speed version.

Video dimension (D,H,W)
Dist. 32,32,32 32,32,32 64,32,32 128,32,32
Speed Fast Very Fast Fast Normal
1 dist 79.16 57.64 58.08 56.71
6 dist 66.61 55.79 57.21 56.80
15 dist 64.35 55.69 56.08 56.18
26 dist 62.59 55.35 56.25 55.70

Wider Network: We increased the feature maps on all but
readout layers to 4× of their original size. We again ob-

served a similar monotonic decrease in accuracy, as in case
of experiments with the original feature maps. Contrary to
the belief of large feature maps being able to learn better
representation of objects, we observe a 14% drop in accu-
racy for 64-frame 26 distractor version of the dataset. For
other longer path length datasets, we also observed small
drops in accuracy. Only the shorter path length videos show
an insignificant increase in accuracy. See tables 5 and 6 for
constant and variable speed experiments respectively.

Table 5: Evaluation accuracy of I3D with wider network
with variation in the number of frames.

Video dimension (D,H,W)
Distractors 32,32,32 64,32,32 128,32,32
1 dist 93.42 79.56 53.59
6 dist 87.28 64.40 52.68
15 dist 85.23 64.49 50.77
26 dist 82.86 50.95 50.75

Table 6: Evaluation accuracy of I3D with wider network
with variable speed datasets, compared to the longer con-
stant speed version.

Video dimension (D,H,W)
Dist. 32,32,32 32,32,32 64,32,32 128,32,32
Speed Fast Very Fast Fast Normal
1 dist 80.28 56.20 57.38 53.59
6 dist 68.86 52.01 56.49 52.68
15 dist 64.15 50.79 50.76 50.77
26 dist 62.74 55.81 50.78 50.75

Another explanation for poor performance on the task is
that Pathtracker videos consist of a single channel, contain-
ing dots and markers. It is possible that model performance
could be improved by engineering the dataset to disentangle
dots and markers at the input, ensuring that these resources
do not interfere with each other when they are encoded by
models [7, 14]. To test this hypothesis, we generated new
versions of Pathtracker with three-channel videos, in which
the first channel contained the start marker, the second chan-
nel contained the dots, and the third channel contained the
finish marker (Fig. S1). However, I3D performed similarly
on these datasets as it did on the original ones.

We also tested whether training on optic flow encodings
of Pathtracker videos would improve I3D performance.
However, this led to similar performance as when I3D was
trained on the original dataset (see section S2 in supplemen-
tary materials for details and results).

5. Discussion and Conclusion

We found that I3D struggles to learn most of the Path-
tracker challenge. In particular, I3D performance was
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strongly affected by dot clutter, speed, and path length. Im-
portantly, I3D is capable of solving a baseline version of
the challenge with a single distractor in relatively short (32-
frame) videos. Thus, Pathtracker stands as a novel chal-
lenge for spatiotemporal neural networks.

What mechanisms do biological visual systems rely on
for appearance-free tracking? Evidence from cognitive sci-
ence suggests that human observers explicitly “trace” the
trajectories of individual dots [12, 5]. Similar types of trac-
ing routines have been associated with the computations of
neural circuits, and specifically the ability to transitively
group features according to gestalt rules like “good continu-
ity” [10, 16, 15]. We suspect that similar circuits might help
on Pathtracker, although they may need additional mecha-
nisms for learning to detect spatiotemporal features.

Even though appearance-free tracking hasn’t received
much attention in computer vision to date, solving this prob-
lem holds immense promise in resolving the brittle gener-
alization of neural networks. Indeed, a network that can
solve Pathtracker might also be expected to be able to gen-
eralize between standard object tracking benchmarks, and
synthetic or real-world tracking applications, with little or
no additional retraining. Furthermore, combining a good
appearance-free tracker with typical apperance-based track-
ers might improve better performance when asked to track
over long periods of time or in the presence of clutter or
occlusion.

We have proposed a novel synthetic and feature agnos-
tic tracking task inspired by cognitive psychology that chal-
lenges the long-range spatiotemporal tracking abilities of
deep neural networks. Our task highlights a key limita-
tion of the current state-of-the-art models in tracking objects
without appearance cues.
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– Supplementary Information –
S1. Hyperparameter Search

We performed an extensive hyperparameter search with
variable learning rates and weight decays on all constant
speed RGB datasets with mixed channels (Fig. 1) to check
if any combination of learning rate and weight decay yields
better accuracy with our engineered dataset than our earlier
experiments (see tables S1, S2, S3). The default learning
rate and weight decay for our earlier experiments were set
at 3×10−4 and 4×10−5 respectively (first cell in all tables).
We found that barring 128-frame 26 distractor dataset, there
was no significant improvement in accuracy compared to
our default experiments.

Table S1: Evaluation accuracies from hyperparameter
Search on I3D with RGB datasets of dimensions 32× 32×
32 using given learning rates and weight decays

1 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 93.52 92.90 89.44 82.78
1× 10−6 93.88 93.38 89.60 82.58
6 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 86.90 86.19 79.11 76.09
1× 10−6 86.30 86.16 79.90 77.41
15 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 83.44 83.22 78.22 75.36
1× 10−6 83.59 82.32 77.79 75.15
26 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 80.09 79.29 77.41 67.83
1× 10−6 81.03 79.11 77.50 70.61

Table S2: Evaluation accuracies from hyperparameter
Search on I3D with RGB datasets of dimensions 64× 32×
32 using given learning rates and weight decays

1 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 80.07 79.55 73.41 67.16
1× 10−6 81.29 79.60 74.35 67.47
6 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 66.62 66.25 62.80 59.34
1× 10−6 67.39 66.40 62.71 58.99
15 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 65.06 63.75 61.19 56.38
1× 10−6 65.13 63.87 61.10 54.90
26 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 64.29 60.96 58.82 53.13
1× 10−6 63.00 63.73 57.61 53.36

S2. Experiments with Optic Flow
As done in [4], we calculated optic flow for all the

datasets using TV-L1 algorithm [11, 17]. We engineered our
dataset (see Figure S1) to check if spreading features across
different channels could help improve the performance of
I3D [7, 14]. To this end, we put the starting marker in the
first channel, dots in the second, and ending marker in the
last channel. We further used OpenCV’s TV-L1 implemen-
tation [17] to calculate optic flow on our videos. We used
two channels from the output given by the TV-L1 algorithm,
and appended one channel from the raw dataset to simulate
the two-stream network described in [4] in their RGB+Flow
experiments. We found that engineered dataset combined
with optic flow was unable to rescue the performance of
I3D on our Pathtracker challenge (see table S4). In a few
cases, we even observed a drop in accuracy compared to
our earlier experiments without optic flow (compare with
table 1).
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Figure S1: Positive example from the engineered dataset of Pathtracker challenge. The markers and dots are spread across
multiple channels. The starting marker is in the first channel, the dots are in second channel, while the ending marker is in
the last channel. Everything else is same as our original dataset in Figure 1. See section 1 for description on challenge.

Table S3: Evaluation accuracies from hyperparameter
Search on I3D with RGB datasets of dimensions 128×32×
32 using given learning rates and weight decays

1 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 56.66 57.70 55.12 53.77
1× 10−6 58.20 57.80 55.04 54.27
6 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 56.40 55.22 53.74 53.51
1× 10−6 56.32 55.73 53.72 53.34
15 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 56.54 55.47 52.82 52.63
1× 10−6 56.55 55.86 53.51 52.59
26 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 50.81 55.11 51.91 51.35
1× 10−6 53.65 56.06 52.49 51.67

Table S4: Evaluation accuracy of I3D with optic flow with
variation in the number of frames.

Video dimension (D,H,W)
Distractors 32,32,32 64,32,32 128,32,32
1 dist 93.35 78.77 51.20
6 dist 83.71 65.94 51.84
15 dist 79.59 62.21 51.03
26 dist 78.50 51.55 50.85

S3. Hyperparameter Search with Optic Flow

We performed an extensive hyperparameter search with
variable learning rates and weight decays on all constant
speed datasets with separate channels and optic flow to
check if any combination of learning rate and weight de-
cay yields better accuracy with our engineered dataset than
our earlier experiments (see tables S5, S6, S7). The default
learning rate and weight decay for our earlier experiments

were set at 3 × 10−4 and 4 × 10−5 respectively (first cell
in all tables). We found that barring 64-frame 26 distrac-
tor dataset, there was no significant improvement in accu-
racy compared to our default experiments. Different com-
binations of hyperparameters coupled with optic flow were
again insufficient in rescuing performance of I3D on our
Pathtracker challenge.

Table S5: Evaluation accuracies from hyperparameter
Search on I3D with optic flow datasets of dimensions 32×
32× 32 using given learning rates and weight decays

1 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 93.35 93.00 89.55 78.73
1× 10−6 93.50 93.50 88.63 80.17
6 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 83.71 84.72 78.61 72.58
1× 10−6 83.98 84.08 78.03 72.64
15 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 79.59 78.39 76.13 68.39
1× 10−6 79.63 78.86 76.00 65.27
26 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 78.50 78.42 74.44 62.98
1× 10−6 78.54 78.40 73.53 59.92
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Table S6: Evaluation accuracies from hyperparameter
Search on I3D with optic flow datasets of dimensions 64×
32× 32 using given learning rates and weight decays

1 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 78.77 77.81 70.27 62.20
1× 10−6 79.14 78.02 70.19 61.45
6 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 65.94 65.93 59.56 55.78
1× 10−6 66.58 66.06 60.64 56.91
15 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 62.21 61.82 58.05 54.63
1× 10−6 62.20 62.39 58.04 53.66
26 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 51.55 61.75 54.62 52.59
1× 10−6 62.07 60.20 56.26 52.36

Table S7: Evaluation accuracies from hyperparameter
Search on I3D with optic flow datasets of dimensions 128×
32× 32 using given learning rates and weight decays

1 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 51.20 57.29 54.56 53.98
1× 10−6 54.66 57.22 55.10 53.60
6 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 51.84 54.34 53.45 52.24
1× 10−6 56.30 54.26 52.69 52.11
15 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 51.03 54.49 52.74 52.07
1× 10−6 52.96 55.43 53.03 51.82
26 dist. Learning Rate
Weight
Decay

3× 10−4 1× 10−4 1× 10−5 1× 10−6

4× 10−5 50.85 50.81 51.80 50.96
1× 10−6 50.77 53.61 51.66 51.63
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