A practitioner’s guide to improve the logistics of
spatiotemporal deep neural networks for animal
behavior analysis

Lakshmi Narasimhan Govindarajan

Rohit Kakodkar Thomas Serre

{lakshmi_govindarajan, rohit_kakodkar, thomas_serre } @brown.edu
Brown University, Providence, RI, USA

Abstract—Quantifying behavior is essential for understanding
how the brain works. Advances in high-throughput video mon-
itoring capabilities combined with the development of sophis-
ticated spatiotemporal deep neural networks offer tremendous
promise for high-throughput behavioral neuroscience research.
However, the high cost associated with the deployment of these
systems has restricted their widespread applicability. Here, we
explore a suite of optimization techniques for a representative
neural network architecture, the I3D, trained to perform action
classification on freely behaving mice in a homecage setup. Our
results suggest that simple optimizations in data loading protocols
and network specification yield significant reductions (up to
~ 50%) in model runtime (and hence in associated computing
costs) without sacrificing the system’s overall accuracy.

I. INTRODUCTION

Behavior reflects a cascade of neuronal processes and
constitutes the ultimate brain output. Quantifying behavior in
naturalistic contexts is thus vital to mainstream neuroscience
research and it is also critical for biomedical research including
drug discovery and disease monitoring. One of the primary
challenges in quantifying behavior is phenotypic diversity.
Each individual’s behavioral dynamics span from timescales
of milliseconds to hours with a high degree of variability [3}
12]]. Capturing this diversity necessitates continuous, high-
throughput, and high-resolution video imaging made possible
by recent engineering advances [2]]. Naturally, the vast trove of
video data provided a thrust for the development of algorithms
for automating behavioral analysis [[10, |17, |1} |6} (18} |14, [11].

Until recently, the vast majority of computer vision research
has heavily focused on the analysis of images including image
categorization and segmentation, object detection and face
recognition among others [21} |8} 20]. Models that approached
human accuracy on such tasks are derivatives of a general
class of feedforward artificial neural architectures known as
Deep Convolutional Networks (DCNs). As a result of the
enormous success of DCNs in computer vision, they were
quickly adopted in behavioral research to automate many of
the image analysis pipelines from animal detection, counting,
and pose estimation [/15] [14].

Dealing directly with continuous video data, however,
brings a new challenge because of the enormous amount of
data that needs to be processed for video data compared
to image data [22f]. A natural extension of DCNs from 2D
spatial to 3D spatiotemporal neural architectures resulted in

orders of magnitude increase in the parametric complexity
of these algorithms. As a result, neural networks for video
analysis are significantly slower, need more data to train,
and exhibit poorer generalization capabilities compared to
their 2D spatial counterparts. In practice, this has limited
the applicability of these architectures for domains such as
behavioral neuroscience with enormous amounts of data to
be analyzed. As a result, current methods extract frame-based
embeddings and use adhoc strategies to integrate information
from these frame-level features over time [19, 24]. More
recently, the rise of large-scale, naturalistic video datasets has
started to afford the learning of high-quality spatiotemporal
representations that serve as good starting points for several
downstream objectives.

The runtime complexity (even for inference) of deep spa-
tiotemporal models, however, remains prohibitive to their
utility for automated continuous behavior monitoring. We con-
sider the case where a typical behavioral experiment comprises
a cohort of N animals, each recorded continuously for 7" days,
with one such experiment resulting in N x T' x 24 hours of
video. For a reasonable choice of N = 24 and T = 5 (as
done in [9} [23} |6]), we are faced with the processing of 2, 880
hours of video. A back-of-the-envelope calculation reveals
this to be ~ 1,100 GPU hours on a standard Nvidia Tesla
V100 (or nearly 46 days of compute / wait time). Practicality
demands that inference on this collection of videos is executed
in parallel, which necessitates the need for a very significant
computing infrastructure. Though most research laboratories
lack local infrastructure at this scale, they can leverage cloud
computing platforms such as Google Cloud Platform (GCP)
and Amazon Web Services (AWS). Even at a nominal rate of
$1.50 per hour, the aforementioned behavioral experiment will
result in a total cost of ~ $1,650! This exercise highlights the
need for techniques to trim model runtimes towards reasonable
wait times and associated costs.

In the remainder of this short article, we consider a standard
spatiotemporal DCN, the 13D [4]], that was trained to perform
a 9-way behavior classification on videos of freely behaving
mice in homecages [7]. The overall balanced accuracy of the
system was at 81.5% (with chance performance being 11.1%),
reaching the inter-human agreement ceiling and comparable to
successful studies in the past [10, (9, [23| |6]. Herein, we focus
on summarizing the general insights we have gained from

our attempts to improve the runtime efficiency of this model,
with an eye on large-scale inference. Specifically, we were
able to take advantage of computations that can be executed
asynchronously in parallel as well as acceleration through
the TensorRT framework. Leveraging these optimizations, we
were able to reduce the model runtime and costs by up
to ~ 50% while preserving the system’s overall accuracy.
While this work focuses on the I3D architecture and our
specific behavioral analysis workflow, the approach is general.
We make available code snippets to highlight the ease of
incorporating these optimizations into any workflow.

Contributions: We consider the application of a standard
spatiotemporal DCN, the 13D, for the automated continuous
behavior monitoring of mice. (1) We explore a set of simple
modifications to significantly improve the model runtime with-
out compromising accuracy; (2) we demonstrate the associated
benefits in terms of reducing the financial cost of running
experiments; and (3) we make available code snippets which
can be easily added to standard code bases for automated
behavioral analysis.

II. THE SYNCHRONOUS PIPELINE

The most basic workflow adopted during the inference
phase of our 13D, or any other spatiotemporal DCN for that
matter, comprises three steps: (1) Reading a “minibatch” of
inputs (b;) into GPU memory either from files on disk or
from onboard CPU memory; (2) applying the necessary pre-
processing steps on this tensor; and (3) executing a forward
pass through the I3D with the pre-processed minibatch. In
our specific use case, by € R64*3%480x640 "\where the leading
dimension denotes the temporal size of an input chunk. The
pre-processing operations include resizing the input tensor
to canonical dimensions, and normalizing the input values.
The network forward passes utilize GPU compute, while data
loading and pre-processing are predominantly CPU-bound.
Without custom specification however these operations are
done synchronously thus resulting in increased GPU idle time
(Fig. [Tp). This situation is sometimes referred to as being
I/O-bound meaning that the GPU is “waiting” for data to
arrive. Similarly, the CPU cores remain idle when the network
forward pass is being executed. We note that cost-cutting
changes here, even minimal, scales with the inference dataset
size.

Towards addressing this, we start by rewriting our naive data
loader method to instead inherit and wrap over the Tensorflow
Dataset class [13ﬂ The Dataset API supports iterating
through data in a streaming fashion while applying necessary
transformations in addition to other useful functionalities that
we will shortly expose.

To provide a handle on converting one’s naive data loader
to utilize the Dataset API, we provide code snippets for
both a basic data loader routine (Snippet|[I)) and the equivalent
Dataset implementation (Fig. E] (Bottom)). We observe that
the changes required are minimal and user-friendly.

Uhttps://www.tensorflow.org/api_docs/python/tf/data/Dataset

Snippet 1 A naive data loader for spatiotemporal inputs.

def Videolterator (video_file, batch_size):
video = open(video_file)
batch, idx = [], 1
for frame in video:
pre—-processed_frame =
batch.append (pre—-processed_frame)
if (idx == batch_size):
yield batch
batch = []
idx = 0
else:
idx += 1

III. PARALLELISM AND ASYNCHRONOUS FETCHING

As we note above, the Dataset API supports a host of
useful functionality to cut down on idle times. One simple
advancement is to distribute the load of fetching and pre-
processing a batch of inputs over multiple CPU cores (Fig. [Ib).
This is carried out via the map protocol as highlighted in
Fig. (Bottom). Though this offers marginal performance
benefits, it does not address the GPU-idling bottleneck. Asyn-
chronous data loaders offer a solution to this particular prob-
lem. In essence, the idea of pre-fetching batches entails the
preparation of future minibatches of input with CPU cores
while the current minibatch is being processed by the GPU
(Fig. Ek). In the most effective of cases, when a GPU is done
processing a minibatch, the next minibatch is ready for use.
This cuts down the GPU-idle time and puts the model in a
regime where it is compute-bound. The pre-fetch routine
in the Dataset API implements this functionality.

We also analyse the performance gains of the parallel
and asynchronous pipeline as a function of the number of
CPU cores allotted (Fig. [2). Our asynchronous system even-
tually saturates with increasing number of CPUs indicating
that at some point the inter-thread communication overhead
outweighs the benefits of wider distribution. At our optimal
configuration, the asynchronous pipeline achieves a ~ 50%
reduction in runtime as compared to the baseline synchronous
processing. We note that all the improvements specified thus
far purely pertain to increasing CPU efficiency and reducing
GPU idle time. To contextualize the scope of further model
optimization, we compute a lower-bound measure for runtime
(Fig. [2). This measure indicates the amount of reduction in
runtime possible by optimizing the 13D architecture directly,
and thereby increasing GPU efficiency. Though a deep dive
into techniques such as model distillation [16]] and pruning [5]
is beyond the scope of this paper, we provide a glimpse
into benefits that can be had by adjustments to the network’s
floating point precision.

pre—-process (frame)

https://www.tensorflow.org/api_docs/python/tf/data/Dataset

Batch n+2

Batch n

Batch n+1

Time to

Core 3
Core 2
Corel

Gpu | I

Time to

C.

Core 3
Core 2
Core 1l

Gpu | I

Time to

class VideoIterator(tf.data.Dataset)
def _generator(video_file):
video = open(video_file)
for frame in video:
preprocessed_frame = preprocess(frame)
yield preprocessed_frame

def __new__(cls, video_file, batch_size):

class videoIterator(tf.data.Dataset)
def _generator(video_file):
video = open(video_file)
for frame in video:
yield frame

def __new_ (cls, video_file, batch_size):
return tf.data.Dataset.from_generator(

class videoIterator(tf.data.Dataset):
def _generator(video_file):
video = open(video_file)
for frame in video:
yield frame

def __new_ (cls, video_file, batch_size):
return tf.data.Dataset.from_generator(

return tf.data.Dataset.from_generator(
cls._generator,
args = ([[video_names]])) \
.batch(batch_size)

cls._generator,

args = ([[video_names]])) \

.map(preprocess,
num_parallel_calls =
tf.contrib.data.AUTOTUNE) \

.batch(batch_size)

cls._generator,

args = ([[video_names]])) \

.map(preprocess,
num_parallel_calls =
tf.contrib.data.AUTOTUNE) \

.batch(batch_size) \

.prefetch(tf.contrib.data.AUTOTUNE)

Fig. 1. Profiling the distribution of compute time across CPU cores and a GPU. Data loading and tensor pre-processing are typically CPU-based operations
while network forward passes utilize GPU compute. (Top) (a) With a synchronous data-loader the CPU utilization and GPU utilization are interleaved
resulting in excess GPU idle time. (b) Multiprocessing can decrease CPU wall times but cannot prevent the GPU from idling. (c) Asynchronous data loading
alleviates this issue. (Bottom) Code snippets demonstrating how each of these functionalities can be specified using the Tensorflow Dataset APIL Changes

are highlighted in red.

1750+
1500} Synchronous
Asynchronous
W 1250+ 1/0O operations
o
Ir)
c 1000+
E 750+
g 0(A)
500
250+
Lower bound
015 3 8 T
#CPUs

Fig. 2. The diminishing utility of invoking multiple CPU cores. On the one
hand, the synchronous data processing pipeline is, as expected, agnostic to
the number of CPU cores invoked. On the other hand, the asynchronous
pipeline shows performance gains with increasing number of CPU cores
before eventually saturating. We also compute a lower-bound for runtime
by just calculating the time to asynchronously load data without any neural
network inference. All timings here correspond to processing a single 1-hr
long video.

IV. ACCELERATION THROUGH TENSORRT

TensorR’IEI is an Nvidia library specifically designed for in-
ference acceleration. Among several standout features offered

2https://developer.nvidia.com/tensorrt

1400 A

all

1300 A

1200

1100 A

1000 +

Time to process a 1 hr long video (in secs)

900 1
=
800 1
700 Q
Synchronous Asynchronous FP16 + INTS +

Asynchronous Asynchronous

Fig. 3. Profiling the runtime efficiency of our I3D model with floating
point adjustments on top of the asynchronous data loader. Runtime data was
collected from N = 30 one hour long videos processed on a standard Nvidia
Tesla V100 GPU with a batch size of 4. FP16 and INT8 refer to quantizations
(both parameters and network activations) that use reduced precision of 16-
bits and 8-bits respectively.

by TensorRT, herein, we focus on the benefits of reduced preci-
sion and quantization for inference runtime. Most major neural
network libraries treat model parameters and activations as 32-
bit floating point numbers by default. Though this high degree
of precision is beneficial for optimization and network stability
during training, it may be superfluous for inference. Reduced
precision inference can significantly improve throughput due

https://developer.nvidia.com/tensorrt

TABLE I
PRICING ESTIMATES (PER HOUR, PER VIDEO) ON GCP FOR RUNNING
INFERENCE IN EACH MODEL CONFIGURATION. THE OVERALL REDUCTION
IN SYSTEM ACCURACY FOR THE OPTIMIZED VERSION WAS WITHIN 2% OF
THE ORIGINAL.

[Configuration Cost per hour per video |
Synchronous $0.93
Asynchronous $0.60
FP16 + Asynchronous $0.57
INTS8 + Asynchronous $0.46

to its smaller computational demands. However, simply trun-
cating floating-point values can be calamitous.

TensorRT specializes in taking a trained neural network
model and constructing an optimized inference engine while
calibrating for reduced precision. Here we tested the runtime
performance of I3Ds adjusted to operate on 16-bit floats
(FP16) and 8-bit integers (INT8) through TensorRT. Though
we do not make it explicit, we oberve and verify that all
adjustments yield approximately the same level of task
accuracy. We report runtimes on a standard Nvidia Tesla
V100 GPU in Fig.

In Table [l we have translated runtimes into pricing esti-
mates as listed for Nvidia Tesla V100 GPUs on the Google
Cloud Computing platform. Given the vast of amount of com-
puting associated with continuous monitoring, even marginal
computational savings on a single network’s forward pass
yields significant cost reduction. As a case in point, let us
revisit our hypothetical behavioral experiment from before.
Performing deep neural inference on just this dataset amounts
to a difference of ~ $1300 between the Synchronous and
INT8+Asynchronous pipelines!

V. DISCUSSION AND CONCLUSION

In this work, we explored the practical cost of using a
state-of-the-art spatiotemporal deep neural network model, the
13D, for automated continuous mice behavior analysis. Despite
the promise of this approach, widespread adoption by the
behavioral neuroscience community is lacking because of the
high cost due to the computational needs of these architectures.
To this end, we explore a suite of optimization tricks towards
improving the runtime efficiency, and associated deployment
costs of these systems. In particular, we find that optimizing
data loading routines via parallel and asynchronous data
loading techniques combined with reduced precision inference
facilitated by the TensorRT framework yield reduction in costs
by nearly 50%. As we point out earlier, model compression
and knowledge distillation techniques can further improve
the cost-effectiveness of spatiotemporal models for large-scale
inference. These are active research topics themselves, but do
hold promise for behavioral neuroscience in the future.

REFERENCES

[1] Ahmet Arac et al. “DeepBehavior: A deep learning
toolbox for automated analysis of animal and human

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

behavior imaging data”. In: Frontiers in systems neuro-
science 13 (2019), p. 20.

Ida L Barlow et al. “Megapixel camera arrays enable
high-resolution animal tracking in multiwell plates”. In:
Communications biology 5.1 (2022), pp. 1-13.

André EX Brown and Benjamin De Bivort. “Ethology
as a physical science”. In: Nature Physics 14.7 (2018),
pp. 653-657.

Joao Carreira and Andrew Zisserman. “Quo vadis, ac-
tion recognition? a new model and the kinetics dataset”.
In: proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 6299—6308.
Jonathan Frankle and Michael Carbin. “The lottery
ticket hypothesis: Finding sparse, trainable neural net-
works”. In: arXiv preprint arXiv:1803.03635 (2018).
Haley L Goodwill et al. “Early life stress leads to sex
differences in development of depressive-like outcomes
in a mouse model”. In: Neuropsychopharmacology 44.4
(2019), pp. 711-720.

Lakshmi Narasimhan Govindarajan et al. “Deep spa-
tiotemporal models for behavioral phenotyping of freely
behaving mice”. In: (in prep) (2022).

Kaiming He et al. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770-
778.

Jeffrey W Hofmann et al. “Reduced expression of MYC
increases longevity and enhances healthspan”. In: Cell
160.3 (2015), pp. 477-488.

Hueihan Jhuang et al. “Automated home-cage be-
havioural phenotyping of mice”. In: Nature communi-
cations 1.1 (2010), pp. 1-10.

Jessy Lauer et al. “Multi-animal pose estimation and
tracking with DeepLabCut”. In: BioRxiv (2021).
Adam Z Lendvai et al. “Analysis of the optimal du-
ration of behavioral observations based on an auto-
mated continuous monitoring system in tree swallows
(Tachycineta bicolor): is one hour good enough?” In:
PLoS One 10.11 (2015), e0141194.

Martin Abadi et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software avail-
able from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

Alexander Mathis et al. “DeepLabCut: markerless pose
estimation of user-defined body parts with deep learn-
ing”. In: Nature neuroscience 21.9 (2018), pp. 1281-
1289.

Mohammad Sadegh Norouzzadeh et al. “Automatically
identifying, counting, and describing wild animals in
camera-trap images with deep learning”. In: Proceed-
ings of the National Academy of Sciences 115.25
(2018), ES716-E5725.

Antonio Polino, Razvan Pascanu, and Dan Alistarh.
“Model compression via distillation and quantization”.
In: arXiv preprint arXiv:1802.05668 (2018).

https://www.tensorflow.org/
https://www.tensorflow.org/

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

Primoz Ravbar, Kristin Branson, and Julie H Simpson.
“An automatic behavior recognition system classifies
animal behaviors using movements and their tempo-
ral context”. In: Journal of neuroscience methods 326
(2019), p. 108352.

Kelsey N Schuch et al. “Discriminating between sleep
and exercise-induced fatigue using computer vision and
behavioral genetics”. In: Journal of neurogenetics 34.3-
4 (2020), pp. 453-465.

Cristina Segalin et al. “The Mouse Action Recognition
System (MARS) software pipeline for automated anal-
ysis of social behaviors in mice”. In: Elife 10 (2021),
€63720.

Thomas Serre. “Deep learning: the good, the bad, and
the ugly”. In: Annual review of vision science 5.1
(2019), pp. 399-426.

Christian Szegedy et al. “Going deeper with convo-
lutions”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, pp. 1-9.
Du Tran et al. “A closer look at spatiotemporal con-
volutions for action recognition”. In: Proceedings of
the IEEE conference on Computer Vision and Pattern
Recognition. 2018, pp. 6450-6459.

Matthew A White et al. “TDP-43 gains function due to
perturbed autoregulation in a Tardbp knock-in mouse
model of ALS-FTD”. In: Nature neuroscience 21.4
(2018), pp. 552-563.

Ye Emily Wu et al. “Neural control of affiliative touch
in prosocial interaction”. In: Nature 599.7884 (2021),
pp- 262-267.

	Introduction
	The synchronous pipeline
	Parallelism and asynchronous fetching
	Acceleration through TensorRT
	Discussion and Conclusion

